BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30853635)

  • 1. Effects of partial maize silage substitution with microalgae on viscosity and biogas yields in continuous AD trials.
    Gruber-Brunhumer MR; Montgomery LFR; Nussbaumer M; Schoepp T; Zohar E; Muccio M; Ludwig I; Bochmann G; Fuchs W; Drosg B
    J Biotechnol; 2019 Apr; 295():80-89. PubMed ID: 30853635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenome changes in the mesophilic biogas-producing community during fermentation of the green alga Scenedesmus obliquus.
    Wirth R; Lakatos G; Böjti T; Maróti G; Bagi Z; Kis M; Kovács A; Ács N; Rákhely G; Kovács KL
    J Biotechnol; 2015 Dec; 215():52-61. PubMed ID: 26087313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept.
    Mussgnug JH; Klassen V; Schlüter A; Kruse O
    J Biotechnol; 2010 Oct; 150(1):51-6. PubMed ID: 20691224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous biogas and biogas slurry production from co-digestion of pig manure and corn straw: Performance optimization and microbial community shift.
    Ning J; Zhou M; Pan X; Li C; Lv N; Wang T; Cai G; Wang R; Li J; Zhu G
    Bioresour Technol; 2019 Jun; 282():37-47. PubMed ID: 30851572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment of poultry manure for efficient biogas production as monosubstrate or co-fermentation with maize silage and corn stover.
    Böjti T; Kovács KL; Kakuk B; Wirth R; Rákhely G; Bagi Z
    Anaerobe; 2017 Aug; 46():138-145. PubMed ID: 28351698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops.
    Schwede S; Kowalczyk A; Gerber M; Span R
    Bioresour Technol; 2013 Nov; 148():428-35. PubMed ID: 24071442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionally redundant but dissimilar microbial communities within biogas reactors treating maize silage in co-fermentation with sugar beet silage.
    Langer SG; Ahmed S; Einfalt D; Bengelsdorf FR; Kazda M
    Microb Biotechnol; 2015 Sep; 8(5):828-36. PubMed ID: 26200922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a novel two-phase continuously fed leach bed reactor for demand-based biogas production from maize silage.
    Linke B; Rodríguez-Abalde Á; Jost C; Krieg A
    Bioresour Technol; 2015 Feb; 177():34-40. PubMed ID: 25479391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion.
    Sun C; Cao W; Banks CJ; Heaven S; Liu R
    Bioresour Technol; 2016 Oct; 218():1215-23. PubMed ID: 27474956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure.
    Oleskowicz-Popiel P; Lisiecki P; Holm-Nielsen JB; Thomsen AB; Thomsen MH
    Bioresour Technol; 2008 Sep; 99(13):5327-34. PubMed ID: 18096383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of maize silage as co-substrate for swine manure on the bacterial community structure in biogas plants.
    Fliegerová K; Mrázek J; Kajan M; Podmirseg SM; Insam H
    Folia Microbiol (Praha); 2012 Jul; 57(4):281-4. PubMed ID: 22491986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic co-digestion of cattle manure and alternative crops for the substitution of maize in South Europe.
    Kalamaras SD; Kotsopoulos TA
    Bioresour Technol; 2014 Nov; 172():68-75. PubMed ID: 25237775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage.
    Pobeheim H; Munk B; Lindorfer H; Guebitz GM
    Water Res; 2011 Jan; 45(2):781-7. PubMed ID: 20875911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study.
    Kafle GK; Bhattarai S; Kim SH; Chen L
    Environ Technol; 2014; 35(21-24):2708-17. PubMed ID: 25176305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates.
    Herrmann C; Kalita N; Wall D; Xia A; Murphy JD
    Bioresour Technol; 2016 Aug; 214():328-337. PubMed ID: 27152773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags.
    Negri M; Bacenetti J; Fiala M; Bocchi S
    Bioresour Technol; 2016 Jun; 209():40-9. PubMed ID: 26946439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage.
    Cavinato C; Da Ros C; Pavan P; Bolzonella D
    Bioresour Technol; 2017 Jan; 223():59-64. PubMed ID: 27780092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.
    Mertens A; Van Meensel J; Mondelaers K; Buysse J
    Commun Agric Appl Biol Sci; 2015; 80(1):23-8. PubMed ID: 26630751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of anaerobic digestion of a mixture of Zea mays and Miscanthus sacchariflorus silages with various pig manure dosages.
    Bułkowska K; Pokój T; Klimiuk E; Gusiatin ZM
    Bioresour Technol; 2012 Dec; 125():208-16. PubMed ID: 23026336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of increasing the organic loading rate on the co-digestion and mono-digestion of cattle slurry and maize.
    Cornell M; Banks CJ; Heaven S
    Water Sci Technol; 2012; 66(11):2336-42. PubMed ID: 23032762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.