BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30853756)

  • 1. SENSITIVITY ANALYSIS FOR UNMEASURED CONFOUNDING IN COARSE STRUCTURAL NESTED MEAN MODELS.
    Yang S; Lok JJ
    Stat Sin; 2018 Oct; 28(4):1703-1723. PubMed ID: 30853756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures.
    Brumback BA; HernĂ¡n MA; Haneuse SJ; Robins JM
    Stat Med; 2004 Mar; 23(5):749-67. PubMed ID: 14981673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiparametric estimation of structural nested mean models with irregularly spaced longitudinal observations.
    Yang S
    Biometrics; 2022 Sep; 78(3):937-949. PubMed ID: 33870495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrumental variable estimation of the marginal structural Cox model for time-varying treatments.
    Cui Y; Michael H; Tanser F; Tchetgen Tchetgen E
    Biometrika; 2023 Mar; 110(1):101-118. PubMed ID: 36798841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the impact of unmeasured confounding for binary outcomes using confounding functions.
    Kasza J; Wolfe R; Schuster T
    Int J Epidemiol; 2017 Aug; 46(4):1303-1311. PubMed ID: 28338913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity analysis of unmeasured confounding in causal inference based on exponential tilting and super learner.
    Zhou M; Yao W
    J Appl Stat; 2023; 50(3):744-760. PubMed ID: 36819084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study.
    McGuinness MB; Kasza J; Karahalios A; Guymer RH; Finger RP; Simpson JA
    BMC Med Res Methodol; 2019 Dec; 19(1):223. PubMed ID: 31795945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint mixed-effects models for causal inference with longitudinal data.
    Shardell M; Ferrucci L
    Stat Med; 2018 Feb; 37(5):829-846. PubMed ID: 29205454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of time to start treatment following infection with application to initiating HAART in HIV-positive patients.
    Lok JJ; DeGruttola V
    Biometrics; 2012 Sep; 68(3):745-54. PubMed ID: 22352840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses.
    Palmer TM; Thompson JR; Tobin MD; Sheehan NA; Burton PR
    Int J Epidemiol; 2008 Oct; 37(5):1161-8. PubMed ID: 18463132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The missing cause approach to unmeasured confounding in pharmacoepidemiology.
    Abrahamowicz M; Bjerre LM; Beauchamp ME; LeLorier J; Burne R
    Stat Med; 2016 Mar; 35(7):1001-16. PubMed ID: 26932124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A FLEXIBLE SENSITIVITY ANALYSIS APPROACH FOR UNMEASURED CONFOUNDING WITH MULTIPLE TREATMENTS AND A BINARY OUTCOME WITH APPLICATION TO SEER-MEDICARE LUNG CANCER DATA.
    Hu L; Zou J; Gu C; Ji J; Lopez M; Kale M
    Ann Appl Stat; 2022 Jun; 16(2):1014-1037. PubMed ID: 36644682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies.
    Barrowman MA; Peek N; Lambie M; Martin GP; Sperrin M
    BMC Med Res Methodol; 2019 Jul; 19(1):166. PubMed ID: 31366331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity Analysis for Unmeasured Confounding in Meta-Analyses.
    Mathur MB; VanderWeele TJ
    J Am Stat Assoc; 2020; 115(529):163-172. PubMed ID: 32981992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tutorial on the use of instrumental variables in pharmacoepidemiology.
    Ertefaie A; Small DS; Flory JH; Hennessy S
    Pharmacoepidemiol Drug Saf; 2017 Apr; 26(4):357-367. PubMed ID: 28239929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating causal treatment effects from longitudinal HIV natural history studies using marginal structural models.
    Ko H; Hogan JW; Mayer KH
    Biometrics; 2003 Mar; 59(1):152-62. PubMed ID: 12762452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the structure and magnitude of time-varying uncontrolled confounding in simulated cohort data analyzed using g-computation.
    Soohoo M; Arah OA
    Int J Epidemiol; 2023 Dec; 52(6):1907-1913. PubMed ID: 37898996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G-estimation of structural nested restricted mean time lost models to estimate effects of time-varying treatments on a failure time outcome.
    Hagiwara Y; Shinozaki T; Matsuyama Y
    Biometrics; 2020 Sep; 76(3):799-810. PubMed ID: 31829432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.