These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30854198)

  • 1. Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing - a deep learning approach.
    Yao R; Ochoa M; Yan P; Intes X
    Light Sci Appl; 2019; 8():26. PubMed ID: 30854198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High compression deep learning based single-pixel hyperspectral macroscopic fluorescence lifetime imaging
    Ochoa M; Rudkouskaya A; Yao R; Yan P; Barroso M; Intes X
    Biomed Opt Express; 2020 Oct; 11(10):5401-5424. PubMed ID: 33149959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ReCSAI: recursive compressed sensing artificial intelligence for confocal lifetime localization microscopy.
    Reinhard S; Helmerich DA; Boras D; Sauer M; Kollmannsberger P
    BMC Bioinformatics; 2022 Dec; 23(1):530. PubMed ID: 36482307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast fit-free analysis of fluorescence lifetime imaging via deep learning.
    Smith JT; Yao R; Sinsuebphon N; Rudkouskaya A; Un N; Mazurkiewicz J; Barroso M; Yan P; Intes X
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24019-24030. PubMed ID: 31719196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging.
    Pian Q; Yao R; Sinsuebphon N; Intes X
    Nat Photonics; 2017; 11():411-414. PubMed ID: 29242714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Y-Net: Hybrid deep learning image reconstruction for photoacoustic tomography in vivo.
    Lan H; Jiang D; Yang C; Gao F; Gao F
    Photoacoustics; 2020 Dec; 20():100197. PubMed ID: 32612929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.
    Yang G; Yu S; Dong H; Slabaugh G; Dragotti PL; Ye X; Liu F; Arridge S; Keegan J; Guo Y; Firmin D; Keegan J; Slabaugh G; Arridge S; Ye X; Guo Y; Yu S; Liu F; Firmin D; Dragotti PL; Yang G; Dong H
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1310-1321. PubMed ID: 29870361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Efficient Deep Learning-Based High-Definition Image Compressed Sensing Framework for Large-Scene Construction Site Monitoring.
    Zeng T; Wang J; Wang X; Zhang Y; Ren B
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network.
    Lin Z; Gong T; Wang K; Li Z; He H; Tong Q; Yu F; Zhong J
    Med Phys; 2019 Jul; 46(7):3101-3116. PubMed ID: 31009085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning approach for Fourier ptychography microscopy.
    Nguyen T; Xue Y; Li Y; Tian L; Nehmetallah G
    Opt Express; 2018 Oct; 26(20):26470-26484. PubMed ID: 30469733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepCubeNet: reconstruction of spectrally compressive sensed hyperspectral images with deep neural networks.
    Gedalin D; Oiknine Y; Stern A
    Opt Express; 2019 Nov; 27(24):35811-35822. PubMed ID: 31878747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact and robust deep learning architecture for fluorescence lifetime imaging and FPGA implementation.
    Zang Z; Xiao D; Wang Q; Jiao Z; Chen Y; Li DDU
    Methods Appl Fluoresc; 2023 Mar; 11(2):. PubMed ID: 36863024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss.
    Quan TM; Nguyen-Duc T; Jeong WK
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1488-1497. PubMed ID: 29870376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier ptychographic microscopy reconstruction with multiscale deep residual network.
    Zhang J; Xu T; Shen Z; Qiao Y; Zhang Y
    Opt Express; 2019 Mar; 27(6):8612-8625. PubMed ID: 31052676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Neural Network for Photoacoustic Imaging Reconstruction.
    Lan H; Zhou K; Yang C; Liu J; Gao S; Gao F
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6367-6370. PubMed ID: 31947299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning.
    Gao W; Yan QR; Zhou HL; Yang ST; Fang ZY; Wang YH
    Opt Express; 2021 Feb; 29(4):5552-5566. PubMed ID: 33726090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.