These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30854198)

  • 21. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning.
    Gao W; Yan QR; Zhou HL; Yang ST; Fang ZY; Wang YH
    Opt Express; 2021 Feb; 29(4):5552-5566. PubMed ID: 33726090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep-learning-based single-photon-counting compressive imaging via jointly trained subpixel convolution sampling.
    Li WC; Yan QR; Guan YQ; Yang ST; Peng C; Fang ZY
    Appl Opt; 2020 Aug; 59(23):6828-6837. PubMed ID: 32788773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accelerating MR Imaging via Deep Chambolle-Pock Network
    Wang H; Ying L; Liang D; Cheng J; Jia S; Qiu Z; Shi C; Zou L; Su S; Chang Y; Zhu Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6818-6821. PubMed ID: 31947406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-shot T
    Cai C; Wang C; Zeng Y; Cai S; Liang D; Wu Y; Chen Z; Ding X; Zhong J
    Magn Reson Med; 2018 Nov; 80(5):2202-2214. PubMed ID: 29687915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning for photoacoustic tomography from sparse data.
    Antholzer S; Haltmeier M; Schwab J
    Inverse Probl Sci Eng; 2019; 27(7):987-1005. PubMed ID: 31057659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.
    Mardani M; Gong E; Cheng JY; Vasanawala SS; Zaharchuk G; Xing L; Pauly JM
    IEEE Trans Med Imaging; 2019 Jan; 38(1):167-179. PubMed ID: 30040634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Near-Field Radiofrequency Imaging of Impact Damage on CFRP Materials with Learning-Based Compressed Sensing.
    Song H; Wang Z; Zeng Y; Guo X; Tang C
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compressive Sensing Spectroscopy Using a Residual Convolutional Neural Network.
    Kim C; Park D; Lee HN
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31973148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving resolution of MR images with an adversarial network incorporating images with different contrast.
    Kim KH; Do WJ; Park SH
    Med Phys; 2018 Jul; 45(7):3120-3131. PubMed ID: 29729006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of PET Attenuation Map for Whole-Body Time-of-Flight
    Hwang D; Kang SK; Kim KY; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2019 Aug; 60(8):1183-1189. PubMed ID: 30683763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeepGhost: real-time computational ghost imaging via deep learning.
    Rizvi S; Cao J; Zhang K; Hao Q
    Sci Rep; 2020 Jul; 10(1):11400. PubMed ID: 32647246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallel imaging in time-of-flight magnetic resonance angiography using deep multistream convolutional neural networks.
    Jun Y; Eo T; Shin H; Kim T; Lee HJ; Hwang D
    Magn Reson Med; 2019 Jun; 81(6):3840-3853. PubMed ID: 30666723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel biomedical image indexing and retrieval system via deep preference learning.
    Pang S; Orgun MA; Yu Z
    Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.
    Eo T; Jun Y; Kim T; Jang J; Lee HJ; Hwang D
    Magn Reson Med; 2018 Nov; 80(5):2188-2201. PubMed ID: 29624729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast and robust segmentation of the striatum using deep convolutional neural networks.
    Choi H; Jin KH
    J Neurosci Methods; 2016 Dec; 274():146-153. PubMed ID: 27777000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient and accurate inversion of multiple scattering with deep learning.
    Sun Y; Xia Z; Kamilov US
    Opt Express; 2018 May; 26(11):14678-14688. PubMed ID: 29877404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.