BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30854248)

  • 1. Induced Regenerative Elastic Matrix Repair in LOXL1 Knockout Mouse Cell Cultures: Towards Potential therapy for Pelvic Organ Prolapse.
    Venkataraman L; Lenis AT; Couri BM; Damaser MS; Ramamurthi A
    J Tissue Sci Eng; 2012; 3(3):. PubMed ID: 30854248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastin homeostasis is altered with pelvic organ prolapse in cultures of vaginal cells from a lysyl oxidase-like 1 knockout mouse model.
    Jameson SA; Swaminathan G; Dahal S; Couri B; Kuang M; Rietsch A; Butler RS; Ramamurthi A; Damaser MS
    Physiol Rep; 2020 Jun; 8(11):e14436. PubMed ID: 32533648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Morphometry of Elastic Fibers in Pelvic Organ Prolapse.
    Dahal S; Kuang M; Rietsch A; Butler RS; Ramamurthi A; Damaser MS
    Ann Biomed Eng; 2021 Aug; 49(8):1909-1922. PubMed ID: 33768411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pelvic organ prolapse in fibulin-5 knockout mice: pregnancy-induced changes in elastic fiber homeostasis in mouse vagina.
    Drewes PG; Yanagisawa H; Starcher B; Hornstra I; Csiszar K; Marinis SI; Keller P; Word RA
    Am J Pathol; 2007 Feb; 170(2):578-89. PubMed ID: 17255326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility of hyaluronan oligomers and transforming growth factor-beta1 factors for elastic matrix regeneration by aneurysmal rat aortic smooth muscle cells.
    Kothapalli CR; Gacchina CE; Ramamurthi A
    Tissue Eng Part A; 2009 Nov; 15(11):3247-60. PubMed ID: 19374489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastogenic inductability of smooth muscle cells from a rat model of late stage abdominal aortic aneurysms.
    Gacchina CE; Deb P; Barth JL; Ramamurthi A
    Tissue Eng Part A; 2011 Jul; 17(13-14):1699-711. PubMed ID: 21341992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased expression of elastin, fibulin-5 and lysyl oxidase-like 1 in the uterosacral ligaments of postmenopausal women with pelvic organ prolapse.
    Zhao BH; Zhou JH
    J Obstet Gynaecol Res; 2012 Jun; 38(6):925-31. PubMed ID: 22487196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered mechanics of vaginal smooth muscle cells due to the lysyl oxidase-like1 knockout.
    Ferreira JPS; Kuang M; Parente MPL; Natal Jorge RM; Wang R; Eppell SJ; Damaser M
    Acta Biomater; 2020 Jul; 110():175-187. PubMed ID: 32335309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower urogenital tract anatomical and functional phenotype in lysyl oxidase like-1 knockout mice resembles female pelvic floor dysfunction in humans.
    Lee UJ; Gustilo-Ashby AM; Daneshgari F; Kuang M; Vurbic D; Lin DL; Flask CA; Li T; Damaser MS
    Am J Physiol Renal Physiol; 2008 Aug; 295(2):F545-55. PubMed ID: 18495804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of pre-existing elastic matrix on TGFβ1 and HA oligomer-induced regenerative elastin repair by rat aortic smooth muscle cells.
    Gacchina CE; Ramamurthi A
    J Tissue Eng Regen Med; 2011 Feb; 5(2):85-96. PubMed ID: 20653044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced elastic matrix deposition within three-dimensional collagen scaffolds.
    Venkataraman L; Ramamurthi A
    Tissue Eng Part A; 2011 Nov; 17(21-22):2879-89. PubMed ID: 21702719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming growth factor beta 1 and hyaluronan oligomers synergistically enhance elastin matrix regeneration by vascular smooth muscle cells.
    Kothapalli CR; Taylor PM; Smolenski RT; Yacoub MH; Ramamurthi A
    Tissue Eng Part A; 2009 Mar; 15(3):501-11. PubMed ID: 18847364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of genetically matched wild-type strain and lysyl oxidase-like 1 knockout mouse model of pelvic organ prolapse.
    Couri BM; Borazjani A; Lenis AT; Balog B; Kuang M; Lin DL; Damaser MS
    Female Pelvic Med Reconstr Surg; 2014; 20(5):287-92. PubMed ID: 25181380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper nanoparticle cues for biomimetic cellular assembly of crosslinked elastin fibers.
    Kothapalli CR; Ramamurthi A
    Acta Biomater; 2009 Feb; 5(2):541-53. PubMed ID: 18849207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles for localized delivery of hyaluronan oligomers towards regenerative repair of elastic matrix.
    Sylvester A; Sivaraman B; Deb P; Ramamurthi A
    Acta Biomater; 2013 Dec; 9(12):9292-302. PubMed ID: 23917150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of cesarean delivery on pelvic floor dysfunction in lysyl oxidase like-1 knockout mice.
    Gustilo-Ashby AM; Lee U; Vurbic D; Sypert D; Kuang M; Daneshgari F; Barber MD; Damaser MS
    Female Pelvic Med Reconstr Surg; 2010 Jan; 16(1):21-30. PubMed ID: 22453086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse Knockout Models for Pelvic Organ Prolapse: a Systematic Review.
    Allen-Brady K; Bortolini MAT; Damaser MS
    Int Urogynecol J; 2022 Jul; 33(7):1765-1788. PubMed ID: 35088092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cathepsin K-targeted sub-micron particles for regenerative repair of vascular elastic matrix.
    Jennewine B; Fox J; Ramamurthi A
    Acta Biomater; 2017 Apr; 52():60-73. PubMed ID: 28087488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Pregnancy and Delivery on Cytokine Expression in a Mouse Model of Pelvic Organ Prolapse.
    Couri BM; Lenis AT; Borazjani A; Balog BM; Kuang M; Butler RS; Penn MS; Damaser MS
    Female Pelvic Med Reconstr Surg; 2017; 23(6):449-456. PubMed ID: 28248847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of vaginal distention on elastic fiber synthesis and matrix degradation in the vaginal wall: potential role in the pathogenesis of pelvic organ prolapse.
    Rahn DD; Acevedo JF; Word RA
    Am J Physiol Regul Integr Comp Physiol; 2008 Oct; 295(4):R1351-8. PubMed ID: 18635445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.