BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30854456)

  • 1. The Brain Imaging Collaboration Suite (BrICS): A Cloud Platform for Integrating Whole-Brain Spectroscopic MRI into the Radiation Therapy Planning Workflow.
    Gurbani S; Weinberg B; Cooper L; Mellon E; Schreibmann E; Sheriff S; Maudsley A; Goryawala M; Shu HK; Shim H
    Tomography; 2019 Mar; 5(1):184-191. PubMed ID: 30854456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing a Pipeline for Multiparametric MRI-Guided Radiation Therapy: Initial Results from a Phase II Clinical Trial in Newly Diagnosed Glioblastoma.
    Kim MM; Parmar HA; Aryal MP; Mayo CS; Balter JM; Lawrence TS; Cao Y
    Tomography; 2019 Mar; 5(1):118-126. PubMed ID: 30854449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients.
    Cordova JS; Shu HK; Liang Z; Gurbani SS; Cooper LA; Holder CA; Olson JJ; Kairdolf B; Schreibmann E; Neill SG; Hadjipanayis CG; Shim H
    Neuro Oncol; 2016 Aug; 18(8):1180-9. PubMed ID: 26984746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Longitudinal Imaging Tracker (BrICS-LIT):A Cloud Platform for Monitoring Treatment Response in Glioblastoma Patients.
    Ramesh K; Gurbani SS; Mellon EA; Huang V; Goryawala M; Barker PB; Kleinberg L; Shu HG; Shim H; Weinberg BD
    Tomography; 2020 Jun; 6(2):93-100. PubMed ID: 32548285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying a Radiation Therapy Volume Analysis Pipeline to Determine the Utility of Spectroscopic MRI-Guided Adaptive Radiation Therapy for Glioblastoma.
    Trivedi AG; Kim SH; Ramesh KK; Giuffrida AS; Weinberg BD; Mellon EA; Kleinberg LR; Barker PB; Han H; Shu HG; Shim H; Schreibmann E
    Tomography; 2023 May; 9(3):1052-1061. PubMed ID: 37218946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) to define suspected nonenhancing tumor for radiation therapy planning of glioblastoma.
    Hayes AR; Jayamanne D; Hsiao E; Schembri GP; Bailey DL; Roach PJ; Khasraw M; Newey A; Wheeler HR; Back M
    Pract Radiat Oncol; 2018; 8(4):230-238. PubMed ID: 29730279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning.
    Matsuo M; Miwa K; Tanaka O; Shinoda J; Nishibori H; Tsuge Y; Yano H; Iwama T; Hayashi S; Hoshi H; Yamada J; Kanematsu M; Aoyama H
    Int J Radiat Oncol Biol Phys; 2012 Jan; 82(1):83-9. PubMed ID: 21095072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the lactate-to-N-acetyl-aspartate ratio defined with magnetic resonance spectroscopic imaging before radiation therapy as a new predictive marker of the site of relapse in patients with glioblastoma multiforme.
    Deviers A; Ken S; Filleron T; Rowland B; Laruelo A; Catalaa I; Lubrano V; Celsis P; Berry I; Mogicato G; Cohen-Jonathan Moyal E; Laprie A
    Int J Radiat Oncol Biol Phys; 2014 Oct; 90(2):385-93. PubMed ID: 25104068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating the Effect of Spectroscopic MRI as a Metric for Radiation Therapy Planning in Patients with Glioblastoma.
    Cordova JS; Kandula S; Gurbani S; Zhong J; Tejani M; Kayode O; Patel K; Prabhu R; Schreibmann E; Crocker I; Holder CA; Shim H; Shu HK
    Tomography; 2016 Dec; 2(4):366-373. PubMed ID: 28105468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of recurrence analysis in newly diagnosed glioblastoma multiforme after three-dimensional conformal radiation therapy with respect to pre-radiation therapy magnetic resonance spectroscopic findings.
    Park I; Tamai G; Lee MC; Chuang CF; Chang SM; Berger MS; Nelson SJ; Pirzkall A
    Int J Radiat Oncol Biol Phys; 2007 Oct; 69(2):381-9. PubMed ID: 17513061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of variability in target volume delineation for newly diagnosed glioblastoma: a multi-institutional study from the Korean Radiation Oncology Group.
    Wee CW; Sung W; Kang HC; Cho KH; Han TJ; Jeong BK; Jeong JU; Kim H; Kim IA; Kim JH; Kim SH; Kim S; Lee DS; Lee MY; Lim DH; Park HL; Suh CO; Yoon SM; Kim IH
    Radiat Oncol; 2015 Jul; 10():137. PubMed ID: 26134973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of Radiomics and Metabolic Tumor Volumes in Radiation Treatment of Glioblastoma Multiforme.
    Lopez CJ; Nagornaya N; Parra NA; Kwon D; Ishkanian F; Markoe AM; Maudsley A; Stoyanova R
    Int J Radiat Oncol Biol Phys; 2017 Mar; 97(3):586-595. PubMed ID: 28011044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Approach to Determining Tumor Progression Using a Three-Site Pilot Clinical Trial of Spectroscopic MRI-Guided Radiation Dose Escalation in Glioblastoma.
    Ramesh KK; Huang V; Rosenthal J; Mellon EA; Goryawala M; Barker PB; Gurbani SS; Trivedi AG; Giuffrida AS; Schreibmann E; Han H; de le Fuente M; Dunbar EM; Holdhoff M; Kleinberg LR; Shu HG; Shim H; Weinberg BD
    Tomography; 2023 Feb; 9(1):362-374. PubMed ID: 36828381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Use of the functional imaging modalities in radiation therapy treatment planning in patients with glioblastoma].
    Dhermain F; Ducreux D; Bidault F; Bruna A; Parker F; Roujeau T; Beaudre A; Armand JP; Haie-Meder C
    Bull Cancer; 2005 Apr; 92(4):333-42. PubMed ID: 15888390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Voxels at Risk for Progression in Glioblastoma Based on Dosimetry, Physiologic and Metabolic MRI.
    Anwar M; Molinaro AM; Morin O; Chang SM; Haas-Kogan DA; Nelson SJ; Lupo JM
    Radiat Res; 2017 Sep; 188(3):303-313. PubMed ID: 28723274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI-guided 3D conformal arc micro-irradiation of a F98 glioblastoma rat model using the Small Animal Radiation Research Platform (SARRP).
    Bolcaen J; Descamps B; Deblaere K; Boterberg T; Hallaert G; Van den Broecke C; Decrock E; Vral A; Leybaert L; Vanhove C; Goethals I
    J Neurooncol; 2014 Nov; 120(2):257-66. PubMed ID: 25069566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic MRI-Guided Proton Therapy in Non-Enhancing Pediatric High-Grade Glioma.
    Huang V; Rejimon A; Reddy K; Trivedi AG; Ramesh KK; Giuffrida AS; Muiruri R; Shim H; Eaton BR
    Tomography; 2023 Mar; 9(2):633-646. PubMed ID: 36961010
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Lakomý R; Lojová M; Souckova L; Hynkova L; Polachova K; Vasina J; Demlová R; Poprach A; Sana J; Prochazka T; Smrcka M; Fadrus P; Jancalek R; Selingerova I; Belanova R; Slampa P; Pospisil P; Kazda T
    BMC Cancer; 2024 Jun; 24(1):736. PubMed ID: 38879476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PET and MRI Guided Irradiation of a Glioblastoma Rat Model Using a Micro-irradiator.
    Bolcaen J; Descamps B; Boterberg T; Vanhove C; Goethals I
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning derived tumor infiltration maps for personalized target definition in Glioblastoma radiotherapy.
    Peeken JC; Molina-Romero M; Diehl C; Menze BH; Straube C; Meyer B; Zimmer C; Wiestler B; Combs SE
    Radiother Oncol; 2019 Sep; 138():166-172. PubMed ID: 31302391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.