These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30854536)

  • 21. Perovskite chromates cathode with exsolved iron nanoparticles for direct high-temperature steam electrolysis.
    Li Y; Wang Y; Doherty W; Xie K; Wu Y
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8553-62. PubMed ID: 23931726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnesium-Doped Sr
    Zheng K; Lach J; Zhao H; Huang X; Qi K
    Membranes (Basel); 2022 Oct; 12(10):. PubMed ID: 36295767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells.
    Yang G; Zhou W; Liu M; Shao Z
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35308-35314. PubMed ID: 27966856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. La
    Zhang W; Wang H; Guan K; Wei Z; Zhang X; Meng J; Liu X; Meng J
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26830-26841. PubMed ID: 31268289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proton-Assisted Reconstruction of Perovskite Oxides: Toward Improved Electrocatalytic Activity.
    Cao X; Yan X; Ke L; Zhao K; Yan N
    ACS Appl Mater Interfaces; 2021 May; 13(18):22009-22016. PubMed ID: 33909406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells.
    Zhu Y; Zhou W; Ran R; Chen Y; Shao Z; Liu M
    Nano Lett; 2016 Jan; 16(1):512-8. PubMed ID: 26619096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic removal of phenol from gas streams by perovskite-type catalysts.
    Chen DL; Pan KL; Chang MB
    J Environ Sci (China); 2017 Jun; 56():131-139. PubMed ID: 28571848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coprecipitation synthesis and characterization of La0.8Sr0.2Ga(0.8-x)Mg0.2Co(x)O2.8 for intermediate temperature solid oxide fuel cell electrolytes.
    Lee JG; Yoon HH
    J Nanosci Nanotechnol; 2012 Jan; 12(1):769-74. PubMed ID: 22524055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical Performance of Ba
    Shi H; Chu G; Tan W; Su C
    Front Chem; 2019; 7():947. PubMed ID: 32039157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile Approach to Enhance Activity and CO
    Ma Z; Li L; Ye Q; Dongyang B; Yang W; Dong F; Lin Z
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):30881-30888. PubMed ID: 35770419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The p(O
    Yaremchenko AA; Patrakeev MV; Naumovich EN; Khalyavin DD
    Phys Chem Chem Phys; 2018 Feb; 20(6):4442-4454. PubMed ID: 29372747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermochemically stable ceramic composite membranes based on Bi
    Xing W; Carvalho PA; Polfus JM; Li Z
    Chem Commun (Camb); 2019 Mar; 55(24):3493-3496. PubMed ID: 30834901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells.
    Song Y; Wang W; Qu J; Zhong Y; Yang G; Zhou W; Shao Z
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41257-41267. PubMed ID: 30383360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Oxygen Electrocatalysis in Heterostructured Ceria Electrolytes for Intermediate-Temperature Solid Oxide Fuel Cells.
    Hong T; Zhang Y; Brinkman K
    ACS Omega; 2018 Oct; 3(10):13559-13566. PubMed ID: 31458063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.
    Tong X; Luo T; Meng X; Wu H; Li J; Liu X; Ji X; Wang J; Chen C; Zhan Z
    Small; 2015 Nov; 11(41):5581-8. PubMed ID: 26307555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing Oxygen Reduction Reaction Activity and CO
    Rehman AU; Li M; Knibbe R; Khan MS; Peterson VK; Brand HEA; Li Z; Zhou W; Zhu Z
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26909-26919. PubMed ID: 31268291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterointerface Effect in Accelerating the Cathodic Oxygen Reduction for Intermediate-Temperature Solid Oxide Fuel Cells.
    Meng Y; Zhu X; Meng J; Bai J; Chen R; Zhou D; Wang N; Tian D
    Front Chem; 2022; 10():959863. PubMed ID: 36051624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanostructured Double Perovskite Cathode With Low Sintering Temperature For Intermediate Temperature Solid Oxide Fuel Cells.
    Kim S; Jun A; Kwon O; Kim J; Yoo S; Jeong HY; Shin J; Kim G
    ChemSusChem; 2015 Sep; 8(18):3153-8. PubMed ID: 26227300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ synthesis of a high-performance bismuth oxide based composite cathode for low temperature solid oxide fuel cells.
    Fang W; Yang T; Huang K
    Chem Commun (Camb); 2019 Feb; 55(19):2801-2804. PubMed ID: 30758391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of La
    Mosiałek M; Zimowska M; Kharytonau D; Komenda A; Górski M; Krzan M
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.