These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 30854650)
21. Cardiac optogenetics: using light to monitor cardiac physiology. Koopman CD; Zimmermann WH; Knöpfel T; de Boer TP Basic Res Cardiol; 2017 Aug; 112(5):56. PubMed ID: 28861604 [TBL] [Abstract][Full Text] [Related]
22. Calcium Signaling and Transcriptional Regulation in Cardiomyocytes. Dewenter M; von der Lieth A; Katus HA; Backs J Circ Res; 2017 Sep; 121(8):1000-1020. PubMed ID: 28963192 [TBL] [Abstract][Full Text] [Related]
23. Shortening and intracellular Ca2+ in ventricular myocytes and expression of genes encoding cardiac muscle proteins in early onset type 2 diabetic Goto-Kakizaki rats. Salem KA; Adrian TE; Qureshi MA; Parekh K; Oz M; Howarth FC Exp Physiol; 2012 Dec; 97(12):1281-91. PubMed ID: 22581745 [TBL] [Abstract][Full Text] [Related]
24. Analysis of calcium transients in cardiac myocytes and assessment of the sarcoplasmic reticulum Ca2+-ATPase contribution. Prasad AM; Inesi G Methods Mol Biol; 2012; 798():411-21. PubMed ID: 22130851 [TBL] [Abstract][Full Text] [Related]
25. Basal and β-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700. Fu Y; Westenbroek RE; Scheuer T; Catterall WA Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16598-603. PubMed ID: 25368181 [TBL] [Abstract][Full Text] [Related]
26. Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Parikh SS; Blackwell DJ; Gomez-Hurtado N; Frisk M; Wang L; Kim K; Dahl CP; Fiane A; Tønnessen T; Kryshtal DO; Louch WE; Knollmann BC Circ Res; 2017 Dec; 121(12):1323-1330. PubMed ID: 28974554 [TBL] [Abstract][Full Text] [Related]
27. Mechanistic basis of excitation-contraction coupling in human pluripotent stem cell-derived ventricular cardiomyocytes revealed by Ca2+ spark characteristics: direct evidence of functional Ca2+-induced Ca2+ release. Li S; Cheng H; Tomaselli GF; Li RA Heart Rhythm; 2014 Jan; 11(1):133-40. PubMed ID: 24096168 [TBL] [Abstract][Full Text] [Related]
28. Influence of gelsolin deficiency on excitation contraction coupling in adult murine cardiomyocytes. Weisser-Thomas J; Kempelmann H; Nickenig G; Grohe C; Djoufack P; Fink K; Meyer R J Physiol Pharmacol; 2015 Jun; 66(3):373-83. PubMed ID: 26084219 [TBL] [Abstract][Full Text] [Related]
29. Local calcium gradients during excitation-contraction coupling and alternans in atrial myocytes. Blatter LA; Kockskämper J; Sheehan KA; Zima AV; Hüser J; Lipsius SL J Physiol; 2003 Jan; 546(Pt 1):19-31. PubMed ID: 12509476 [TBL] [Abstract][Full Text] [Related]
30. Calcium response of KCl-excited populations of ventricular myocytes from the European sea bass (Dicentrarchus labrax): a promising approach to integrate cell-to-cell heterogeneity in studying the cellular basis of fish cardiac performance. Ollivier H; Marchant J; Le Bayon N; Servili A; Claireaux G J Comp Physiol B; 2015 Oct; 185(7):755-65. PubMed ID: 26205950 [TBL] [Abstract][Full Text] [Related]
31. Simultaneous AFM Investigation of the Single Cardiomyocyte Electro-Chemo-Mechanics During Excitation-Contraction Coupling. Caluori G; Raiteri R; Tedesco M Methods Mol Biol; 2019; 1886():355-367. PubMed ID: 30374879 [TBL] [Abstract][Full Text] [Related]
32. Caveolae modulate excitation-contraction coupling and beta2-adrenergic signalling in adult rat ventricular myocytes. Calaghan S; White E Cardiovasc Res; 2006 Mar; 69(4):816-24. PubMed ID: 16318846 [TBL] [Abstract][Full Text] [Related]
33. Calcium versus strontium handling by the heart muscle. Hendrych M; Olejnickova V; Novakova M Gen Physiol Biophys; 2016 Jan; 35(1):13-23. PubMed ID: 26612918 [TBL] [Abstract][Full Text] [Related]
34. The impact of ovariectomy on cardiac excitation-contraction coupling is mediated through cAMP/PKA-dependent mechanisms. Parks RJ; Bogachev O; Mackasey M; Ray G; Rose RA; Howlett SE J Mol Cell Cardiol; 2017 Oct; 111():51-60. PubMed ID: 28778766 [TBL] [Abstract][Full Text] [Related]
35. Excitation-contraction coupling in human heart failure examined by action potential clamp in rat cardiac myocytes. Cooper PJ; Soeller C; Cannell MB J Mol Cell Cardiol; 2010 Dec; 49(6):911-7. PubMed ID: 20430038 [TBL] [Abstract][Full Text] [Related]
36. Imaging Intracellular Ca Campo A; Mongillo M Methods Mol Biol; 2019; 1925():111-125. PubMed ID: 30674021 [TBL] [Abstract][Full Text] [Related]
37. High-mobility group box 1 (HMGB1) impaired cardiac excitation-contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca(2+) leak through TLR4-ROS signaling in cardiomyocytes. Zhang C; Mo M; Ding W; Liu W; Yan D; Deng J; Luo X; Liu J J Mol Cell Cardiol; 2014 Sep; 74():260-73. PubMed ID: 24937603 [TBL] [Abstract][Full Text] [Related]
38. Channel surfing: new insights into plasticity of excitation-contraction coupling. Louch WE J Physiol; 2019 Apr; 597(8):2119-2120. PubMed ID: 30854650 [No Abstract] [Full Text] [Related]
39. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca Maxwell JT; Blatter LA J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837 [TBL] [Abstract][Full Text] [Related]
40. Polydatin modulates Ca(2+) handling, excitation-contraction coupling and β-adrenergic signaling in rat ventricular myocytes. Deng J; Liu W; Wang Y; Dong M; Zheng M; Liu J J Mol Cell Cardiol; 2012 Nov; 53(5):646-56. PubMed ID: 22921781 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]