BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30854856)

  • 1. Influence of Chemical Species on Polyphenol-Protein Interactions Related to Wine Astringency.
    Ramos-Pineda AM; Carpenter GH; García-Estévez I; Escribano-Bailón MT
    J Agric Food Chem; 2020 Mar; 68(10):2948-2954. PubMed ID: 30854856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency.
    Rinaldi A; Gambuti A; Moio L
    Food Chem; 2012 Dec; 135(4):2498-504. PubMed ID: 22980834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach.
    Brandão E; Silva MS; García-Estévez I; Williams P; Mateus N; Doco T; de Freitas V; Soares S
    Carbohydr Polym; 2017 Dec; 177():77-85. PubMed ID: 28962798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency.
    Ma W; Waffo-Teguo P; Jourdes M; Li H; Teissedre PL
    PLoS One; 2016; 11(8):e0161095. PubMed ID: 27518822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensorial properties of red wine polyphenols: Astringency and bitterness.
    Soares S; Brandão E; Mateus N; de Freitas V
    Crit Rev Food Sci Nutr; 2017 Mar; 57(5):937-948. PubMed ID: 25897713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative salivary approach regarding palate cleansers in wine tasting.
    Taladrid D; Lorente L; Bartolomé B; Moreno-Arribas MV; Laguna L
    J Texture Stud; 2019 Feb; 50(1):75-82. PubMed ID: 30198574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition Mechanisms of Wine Polysaccharides on Salivary Protein Precipitation.
    Brandão E; Silva MS; García-Estévez I; Williams P; Mateus N; Doco T; de Freitas V; Soares S
    J Agric Food Chem; 2020 Mar; 68(10):2955-2963. PubMed ID: 31690078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.
    Obreque-Slíer E; Peña-Neira A; López-Solís R
    J Agric Food Chem; 2010 Mar; 58(6):3729-35. PubMed ID: 20158256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wine tannins, saliva proteins and membrane lipids.
    Dufourc EJ
    Biochim Biophys Acta Biomembr; 2021 Oct; 1863(10):183670. PubMed ID: 34111413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological study of tannin and protein interactions based on model systems.
    Brossard N; Bordeu E; Ibáñez RA; Chen J; Osorio F
    J Texture Stud; 2020 Aug; 51(4):585-592. PubMed ID: 32110834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of grape and wine tannin interaction with polyproline: implications for red wine astringency.
    McRae JM; Falconer RJ; Kennedy JA
    J Agric Food Chem; 2010 Dec; 58(23):12510-8. PubMed ID: 21070019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wine astringency reduces flavor intensity of Brussels sprouts.
    Carpenter G; Cleaver L; Blakeley M; Hasbullah N; Houghton J; Gardner A
    J Texture Stud; 2019 Feb; 50(1):71-74. PubMed ID: 30387878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red Wine Dryness Perception Related to Physicochemistry.
    Watrelot AA; Heymann H; Waterhouse AL
    J Agric Food Chem; 2020 Mar; 68(10):2964-2972. PubMed ID: 30983339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different physicochemical interactions between varietal wines and human saliva: Correspondence with astringency.
    López-Solís R; Cortés-Araya K; Medel-Marabolí M; Obreque-Slier E
    Food Res Int; 2024 Feb; 178():113964. PubMed ID: 38309881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity of human salivary proteins families toward food polyphenols.
    Soares S; Vitorino R; Osório H; Fernandes A; Venâncio A; Mateus N; Amado F; de Freitas V
    J Agric Food Chem; 2011 May; 59(10):5535-47. PubMed ID: 21417408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.
    Sun B; de Sá M; Leandro C; Caldeira I; Duarte FL; Spranger I
    J Agric Food Chem; 2013 Jan; 61(4):939-46. PubMed ID: 23294371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time Course of Salivary Protein Responses to Cranberry-Derived Polyphenol Exposure as a Function of PROP Taster Status.
    Yousaf NY; Melis M; Mastinu M; Contini C; Cabras T; Tomassini Barbarossa I; Tepper BJ
    Nutrients; 2020 Sep; 12(9):. PubMed ID: 32967117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.
    Cala O; Pinaud N; Simon C; Fouquet E; Laguerre M; Dufourc EJ; Pianet I
    FASEB J; 2010 Nov; 24(11):4281-90. PubMed ID: 20605948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of condensed tannins addition on the astringency of red wines.
    Soares S; Sousa A; Mateus N; de Freitas V
    Chem Senses; 2012 Feb; 37(2):191-8. PubMed ID: 22086902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chip electrophoresis as a novel approach to measure the polyphenols reactivity toward human saliva.
    Rinaldi A; Iturmendi N; Gambuti A; Jourdes M; Teissedre PL; Moio L
    Electrophoresis; 2014 Jun; 35(11):1735-41. PubMed ID: 25025096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.