These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30855063)

  • 1. Non-radiative decay of an eumelanin monomer: to be or not to be planar.
    Ghosh P; Ghosh D
    Phys Chem Chem Phys; 2019 Mar; 21(12):6635-6642. PubMed ID: 30855063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of microsolvation on the non-radiative decay of the eumelanin monomer.
    Ghosh P; Ghosh D
    Phys Chem Chem Phys; 2019 Dec; 21(47):26123-26132. PubMed ID: 31750470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Dimerization on the Nonradiative Processes of Eumelanin Monomer.
    Ghosh P; Ghosh D
    J Phys Chem B; 2021 Jan; 125(2):547-556. PubMed ID: 33410319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathways for Excited-State Nonradiative Decay of 5,6-Dihydroxyindole, a Building Block of Eumelanin.
    Datar A; Hazra A
    J Phys Chem A; 2017 Apr; 121(14):2790-2797. PubMed ID: 28314098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the Photoprotection Mechanism of Eumelanin Monomers.
    Ghosh P; Ghosh D
    J Phys Chem B; 2017 Jun; 121(24):5988-5994. PubMed ID: 28570058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential Proton-Coupled Electron Transfer Mediates Excited-State Deactivation of a Eumelanin Building Block.
    Nogueira JJ; Corani A; El Nahhas A; Pezzella A; d'Ischia M; González L; Sundström V
    J Phys Chem Lett; 2017 Mar; 8(5):1004-1008. PubMed ID: 28195487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of electronically excited indole relaxation dynamics via photoionization and fragmentation pump-probe spectroscopy.
    Godfrey TJ; Yu H; Ullrich S
    J Chem Phys; 2014 Jul; 141(4):044314. PubMed ID: 25084917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast excited state dynamics of 5,6-dihydroxyindole, a key eumelanin building block: nonradiative decay mechanism.
    Gauden M; Pezzella A; Panzella L; Napolitano A; d'Ischia M; Sundström V
    J Phys Chem B; 2009 Sep; 113(37):12575-80. PubMed ID: 19691267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast radiationless transition pathways through conical intersections in photo-excited 9H-adenine.
    Hassan WM; Chung WC; Shimakura N; Koseki S; Kono H; Fujimura Y
    Phys Chem Chem Phys; 2010; 12(20):5317-28. PubMed ID: 20358092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying πσ(∗) states.
    Karmakar S; Mukhopadhyay DP; Chakraborty T
    J Chem Phys; 2015 May; 142(18):184303. PubMed ID: 25978887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton interactions in helical crystals of a hydrogen-bonded eumelanin monomer.
    Sasikumar D; Vinod K; Sunny J; Hariharan M
    Chem Sci; 2022 Feb; 13(8):2331-2338. PubMed ID: 35310511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol.
    Xu X; Yang KR; Truhlar DG
    J Chem Theory Comput; 2013 Aug; 9(8):3612-25. PubMed ID: 26584115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of C-H and C-C stretching modes in the intrinsic non-radiative decay of triplet states in a Pt-containing conjugated phenylene ethynylene.
    Köhler A; Khan AL; Wilson JS; Dosche C; Al-Suti MK; Shah HH; Khan MS
    J Chem Phys; 2012 Mar; 136(9):094905. PubMed ID: 22401471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photophysics of eumelanin: ab initio studies on the electronic spectroscopy and photochemistry of 5,6-dihydroxyindole.
    Sobolewski AL; Domcke W
    Chemphyschem; 2007 Apr; 8(5):756-62. PubMed ID: 17279594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The photoprotection mechanism in the black-brown pigment eumelanin.
    Ilina A; Thorn KE; Hume PA; Wagner I; Tamming RR; Sutton JJ; Gordon KC; Andreassend SK; Chen K; Hodgkiss JM
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2212343119. PubMed ID: 36227945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering low energy deactivation channels in adenine.
    Conti I; Garavelli M; Orlandi G
    J Am Chem Soc; 2009 Nov; 131(44):16108-18. PubMed ID: 19845361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited states of thiophene: ring opening as deactivation mechanism.
    Salzmann S; Kleinschmidt M; Tatchen J; Weinkauf R; Marian CM
    Phys Chem Chem Phys; 2008 Jan; 10(3):380-92. PubMed ID: 18174980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution photofragment translational spectroscopy studies of the near ultraviolet photolysis of imidazole.
    Devine AL; Cronin B; Nix MG; Ashfold MN
    J Chem Phys; 2006 Nov; 125(18):184302. PubMed ID: 17115747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic Water Splitting with the Acridine Chromophore: A Computational Study.
    Liu X; Karsili TN; Sobolewski AL; Domcke W
    J Phys Chem B; 2015 Aug; 119(33):10664-72. PubMed ID: 26215204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the electronic relaxation dynamics in photoexcited 2,4-difluoroaniline via femtosecond time-resolved photoelectron imaging.
    Ling F; Li S; Wei J; Liu K; Wang Y; Zhang B
    J Chem Phys; 2018 Apr; 148(14):144311. PubMed ID: 29655342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.