BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30855222)

  • 1. ZF-Mapper: Simple and Complete Freeware for Fluorescence Quantification in Zebrafish Images.
    Yamamoto D; Sato D; Nakayama H; Nakagawa Y; Shimada Y
    Zebrafish; 2019 Jun; 16(3):233-239. PubMed ID: 30855222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZebraPace: An Open-Source Method for Cardiac-Rhythm Estimation in Untethered Zebrafish Larvae.
    Gaur H; Pullaguri N; Nema S; Purushothaman S; Bhargava Y; Bhargava A
    Zebrafish; 2018 Jun; 15(3):254-262. PubMed ID: 29653072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope.
    Blackburn JS; Liu S; Raimondi AR; Ignatius MS; Salthouse CD; Langenau DM
    Nat Protoc; 2011 Feb; 6(2):229-41. PubMed ID: 21293462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of automated imaging and analysis for zebrafish chemical screens.
    Vogt A; Codore H; Day BW; Hukriede NA; Tsang M
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20613708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP.
    Cooper MS; Szeto DP; Sommers-Herivel G; Topczewski J; Solnica-Krezel L; Kang HC; Johnson I; Kimelman D
    Dev Dyn; 2005 Feb; 232(2):359-68. PubMed ID: 15614774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells.
    Courtney J; Woods E; Scholz D; Hall WW; Gautier VW
    PLoS One; 2015; 10(10):e0140209. PubMed ID: 26485569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images.
    Selinummi J; Ruusuvuori P; Podolsky I; Ozinsky A; Gold E; Yli-Harja O; Aderem A; Shmulevich I
    PLoS One; 2009 Oct; 4(10):e7497. PubMed ID: 19847301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational quantification of fluorescent leukocyte numbers in zebrafish embryos.
    Ellett F; Lieschke GJ
    Methods Enzymol; 2012; 506():425-35. PubMed ID: 22341237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated prior knowledge-based quantification of neuronal patterns in the spinal cord of zebrafish.
    Stegmaier J; Shahid M; Takamiya M; Yang L; Rastegar S; Reischl M; Strähle U; Mikut R
    Bioinformatics; 2014 Mar; 30(5):726-33. PubMed ID: 24135262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of Spontaneous Tail Movement in Zebrafish Embryos Using a Novel Open-Source MATLAB Application.
    González-Fraga J; Dipp-Alvarez V; Bardullas U
    Zebrafish; 2019 Apr; 16(2):214-216. PubMed ID: 30615594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative image analysis tool to study the plasma membrane localization of proteins and cortical actin in neuroendocrine cells.
    Kurps J; Broeke JH; Cijsouw T; Kompatscher A; van Weering JR; de Wit H
    J Neurosci Methods; 2014 Oct; 236():1-10. PubMed ID: 25109903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new software tool for computer assisted in vivo high-content analysis of transplanted fluorescent cells in intact zebrafish larvae.
    Førde JL; Reiten IN; Fladmark KE; Kittang AO; Herfindal L
    Biol Open; 2022 Dec; 11(12):. PubMed ID: 36355409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Workflow for high-content, individual cell quantification of fluorescent markers from universal microscope data, supported by open source software.
    Stockwell SR; Mittnacht S
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25549286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-sample SPIM image acquisition, processing and analysis of vascular growth in zebrafish.
    Daetwyler S; Günther U; Modes CD; Harrington K; Huisken J
    Development; 2019 Mar; 146(6):. PubMed ID: 30824551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green-to-red photoconvertible mEosFP-aided live imaging in plants.
    Mathur J; Griffiths S; Barton K; Schattat MH
    Methods Enzymol; 2012; 504():163-81. PubMed ID: 22264534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TdTomato and EGFP identification in histological sections: insight and alternatives.
    Morris LM; Klanke CA; Lang SA; Lim FY; Crombleholme TM
    Biotech Histochem; 2010 Dec; 85(6):379-87. PubMed ID: 20109099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TCMacro: A Simple and Robust ImageJ-Based Method for Automated Measurement of Tail Coiling Activity in Zebrafish.
    Kurnia KA; Santoso F; Sampurna BP; Audira G; Huang JC; Chen KH; Hsiao CD
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust overlay schemes for the fusion of fluorescence and color channels in biological imaging.
    Glatz J; Symvoulidis P; Garcia-Allende PB; Ntziachristos V
    J Biomed Opt; 2014 Apr; 19(4):040501. PubMed ID: 24695844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an image processing software for quantification of histological calcification staining images.
    Li X; Chan YT; Jiang Y
    PLoS One; 2023; 18(10):e0286626. PubMed ID: 37797053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-stranded RNA injection produces null phenotypes in zebrafish.
    Li YX; Farrell MJ; Liu R; Mohanty N; Kirby ML
    Dev Biol; 2000 Jan; 217(2):394-405. PubMed ID: 10625563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.