BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30855222)

  • 21. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.
    Matovic M; Jankovic M; Barjaktarovic M; Jeremic M
    Hell J Nucl Med; 2017; 20 Suppl():159. PubMed ID: 29324929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescent Nanoparticles with Tissue-Dependent Affinity for Live Zebrafish Imaging.
    Khajuria DK; Kumar VB; Karasik D; Gedanken A
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18557-18565. PubMed ID: 28503921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subcellular object quantification with Squassh3C and SquasshAnalyst.
    Rizk A; Mansouri M; Ballmer-Hofer K; Berger P
    Biotechniques; 2015 Nov; 59(5):309-12. PubMed ID: 26554508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development.
    Megason SG; Fraser SE
    Mech Dev; 2003 Nov; 120(11):1407-20. PubMed ID: 14623446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel method for automated tracking and quantification of adult zebrafish behaviour during anxiety.
    Nema S; Hasan W; Bhargava A; Bhargava Y
    J Neurosci Methods; 2016 Sep; 271():65-75. PubMed ID: 27396369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NeurphologyJ: an automatic neuronal morphology quantification method and its application in pharmacological discovery.
    Ho SY; Chao CY; Huang HL; Chiu TW; Charoenkwan P; Hwang E
    BMC Bioinformatics; 2011 Jun; 12():230. PubMed ID: 21651810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Requirements for green fluorescent protein detection in transgenic zebrafish embryos.
    Amsterdam A; Lin S; Moss LG; Hopkins N
    Gene; 1996; 173(1 Spec No):99-103. PubMed ID: 8707063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical validation and assessment of a modular fluorescent imaging system and algorithm for rapid detection and quantification of dental plaque.
    Angelino K; Shah P; Edlund DA; Mohit M; Yauney G
    BMC Oral Health; 2017 Dec; 17(1):162. PubMed ID: 29284461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Smart Imaging Workflow for Organ-Specific Screening in a Cystic Kidney Zebrafish Disease Model.
    Pandey G; Westhoff JH; Schaefer F; Gehrig J
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30875791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh.
    Rizk A; Paul G; Incardona P; Bugarski M; Mansouri M; Niemann A; Ziegler U; Berger P; Sbalzarini IF
    Nat Protoc; 2014 Mar; 9(3):586-96. PubMed ID: 24525752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confocal microscopic analysis of morphogenetic movements.
    Cooper MS; D'Amico LA; Henry CA
    Methods Cell Biol; 1999; 59():179-204. PubMed ID: 9891361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Green fluorescent fusion proteins: powerful tools for monitoring protein expression in live zebrafish embryos.
    Peters KG; Rao PS; Bell BS; Kindman LA
    Dev Biol; 1995 Sep; 171(1):252-7. PubMed ID: 7556901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-lapse microscopy of brain development.
    Köster RW; Fraser SE
    Methods Cell Biol; 2004; 76():207-35. PubMed ID: 15602878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging and 3D reconstruction of cerebrovascular structures in embryonic zebrafish.
    Ethell DW; Cameron DJ
    J Vis Exp; 2014 Apr; (86):. PubMed ID: 24797110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated, high-throughput quantification of EGFP-expressing neutrophils in zebrafish by machine learning and a highly-parallelized microscope.
    Efromson J; Ferrero G; Bègue A; Doman TJJ; Dugo C; Barker A; Saliu V; Reamey P; Kim K; Harfouche M; Yoder JA
    PLoS One; 2023; 18(12):e0295711. PubMed ID: 38060605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acto3D: an open-source user-friendly volume rendering software for high-resolution 3D fluorescence imaging in biology.
    Takeshita N; Sakaki S; Saba R; Inoue S; Nishikawa K; Ueyama A; Nakajima Y; Matsuo K; Shigeta M; Kobayashi D; Yamazaki H; Yamada K; Iehara T; Yashiro K
    Development; 2024 Apr; 151(8):. PubMed ID: 38657972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PhagoSight: an open-source MATLAB® package for the analysis of fluorescent neutrophil and macrophage migration in a zebrafish model.
    Henry KM; Pase L; Ramos-Lopez CF; Lieschke GJ; Renshaw SA; Reyes-Aldasoro CC
    PLoS One; 2013; 8(8):e72636. PubMed ID: 24023630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robotics and dynamic image analysis for studies of gene expression in plant tissues.
    Hernandez-Garcia CM; Chiera JM; Finer JJ
    J Vis Exp; 2010 May; (39):. PubMed ID: 22157949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large-scale live imaging of adult neural stem cells in their endogenous niche.
    Dray N; Bedu S; Vuillemin N; Alunni A; Coolen M; Krecsmarik M; Supatto W; Beaurepaire E; Bally-Cuif L
    Development; 2015 Oct; 142(20):3592-600. PubMed ID: 26395477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Platform for Quantitative Evaluation of Spatial Intratumoral Heterogeneity in Multiplexed Fluorescence Images.
    Spagnolo DM; Al-Kofahi Y; Zhu P; Lezon TR; Gough A; Stern AM; Lee AV; Ginty F; Sarachan B; Taylor DL; Chennubhotla SC
    Cancer Res; 2017 Nov; 77(21):e71-e74. PubMed ID: 29092944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.