These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 30855309)
21. Anodic oxidation of ifosfamide and cyclophosphamide: a biomimetic metabolism model of the oxazaphosphorinane anticancer drugs. Paci A; Martens T; Royer J Bioorg Med Chem Lett; 2001 May; 11(10):1347-9. PubMed ID: 11392552 [TBL] [Abstract][Full Text] [Related]
22. Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Chen CS; Lin JT; Goss KA; He YA; Halpert JR; Waxman DJ Mol Pharmacol; 2004 May; 65(5):1278-85. PubMed ID: 15102956 [TBL] [Abstract][Full Text] [Related]
23. Trofosfamide: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the oral treatment of cancer. Wagner A; Hempel G; Boos J Anticancer Drugs; 1997 Jun; 8(5):419-31. PubMed ID: 9215603 [TBL] [Abstract][Full Text] [Related]
24. The development of mesna for the inhibition of urotoxic side effects of cyclophosphamide, ifosfamide, and other oxazaphosphorine cytostatics. Brock N Recent Results Cancer Res; 1980; 74():270-8. PubMed ID: 6777836 [TBL] [Abstract][Full Text] [Related]
25. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Chang TK; Yu L; Maurel P; Waxman DJ Cancer Res; 1997 May; 57(10):1946-54. PubMed ID: 9157990 [TBL] [Abstract][Full Text] [Related]
26. Antitumor efficacy and pharmacokinetic analysis of 4-hydroperoxycyclophosphamide in comparison with cyclophosphamide +/- hepatic enzyme effectors. Teicher BA; Holden SA; Goff DA; Wright JE; Tretyakov O; Ayash LJ Cancer Chemother Pharmacol; 1996; 38(6):553-60. PubMed ID: 8823498 [TBL] [Abstract][Full Text] [Related]
27. Activation of the anticancer drugs cyclophosphamide and ifosfamide by cytochrome P450 BM3 mutants. Vredenburg G; den Braver-Sewradj S; van Vugt-Lussenburg BM; Vermeulen NP; Commandeur JN; Vos JC Toxicol Lett; 2015 Jan; 232(1):182-92. PubMed ID: 25448283 [TBL] [Abstract][Full Text] [Related]
28. Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450. Chen CS; Jounaidi Y; Waxman DJ Drug Metab Dispos; 2005 Sep; 33(9):1261-7. PubMed ID: 15919850 [TBL] [Abstract][Full Text] [Related]
29. Antitumor activity of optical isomers of cyclophosphamide, ifosfamide and trofosfamide as compared to clinically used racemates. Kuśnierczyk H; Radzikowski C; Paprocka M; Budzyński W; Rak J; Kinas R; Misiura K; Stec W J Immunopharmacol; 1986; 8(4):455-80. PubMed ID: 3805744 [TBL] [Abstract][Full Text] [Related]
30. Enhancement of antitumor activity of the oxazaphosphorine cytostatic SUM-IAP by N-methylformamide. Voelcker G J Cancer Res Clin Oncol; 2016 Jun; 142(6):1183-9. PubMed ID: 26941190 [TBL] [Abstract][Full Text] [Related]
31. Primary breast tumor levels of suspected molecular determinants of cellular sensitivity to cyclophosphamide, ifosfamide, and certain other anticancer agents as predictors of paired metastatic tumor levels of these determinants. Rational individualization of cancer chemotherapeutic regimens. Sreerama L; Sládek NE Cancer Chemother Pharmacol; 2001 Mar; 47(3):255-62. PubMed ID: 11320670 [TBL] [Abstract][Full Text] [Related]
32. Effect of three alkylating antimitotic agents and their metabolites on in vitro monogranulocytic colony forming cells from mouse bone marrow. Semont H; Hecquet C; Adolphe M; Deysson G Arzneimittelforschung; 1981; 31(3):470-3. PubMed ID: 7194671 [TBL] [Abstract][Full Text] [Related]
33. Use of V79 cells with stably transfected cytochrome P450 cDNAs in studying the metabolism and effects of cytotoxic drugs. Philip PA; Ali-Sadat S; Doehmer J; Kocarek T; Akhtar A; Lu H; Chan KK Cancer Chemother Pharmacol; 1999; 43(1):59-67. PubMed ID: 9923542 [TBL] [Abstract][Full Text] [Related]
34. Unexpected electrophysiological effects of D-19575, a new cytostatic drug. Kleta R; Burckhardt BC; Wolff NA; Schlatter E Nephrol Dial Transplant; 1999; 14 Suppl 4():18-20. PubMed ID: 10463197 [No Abstract] [Full Text] [Related]
35. Release of a votile factor from solutions of oxazaphosphorines which damage normal and malignant cells. Blomgren H; Hallström M Methods Find Exp Clin Pharmacol; 1989 Jun; 11(6):391-7. PubMed ID: 2747340 [TBL] [Abstract][Full Text] [Related]
36. Reversal of resistance to oxazaphosphorines. Zhang J; Tian Q; Zhu YZ; Xu AL; Zhou SF Curr Cancer Drug Targets; 2006 Aug; 6(5):385-407. PubMed ID: 16918308 [TBL] [Abstract][Full Text] [Related]
37. [Nitric oxide donor increases the effectiveness of cytostatic therapy and inhibits the development of drug resistance]. Konovalova NP; Goncharova SA; Volkova LM; Raevskaia TA; Eremenko LT; Korolev AM Vopr Onkol; 2003; 49(1):71-5. PubMed ID: 12715374 [TBL] [Abstract][Full Text] [Related]
38. In vitro activity of glufosfamide in childhood acute leukemia. Styczynski J; Wysocki M; Kurylak A; Juraszewska E; Malinowska I; Stanczak E; Płoszynska A; Stefaniak J; Mazur B; Szczepanski T; Ras M Anticancer Res; 2002; 22(1A):247-50. PubMed ID: 12017297 [TBL] [Abstract][Full Text] [Related]
39. Studies on the urotoxicity of oxazaphosphorine cytostatics and its prevention--I. Experimental studies on the urotoxicity of alkylating compounds. Brock N; Pohl J; Stekar J Eur J Cancer (1965); 1981 Jun; 17(6):595-607. PubMed ID: 7308258 [No Abstract] [Full Text] [Related]
40. Identification and quantification of metabolite conjugates of activated cyclophosphamide and ifosfamide with mesna in urine by ion-pair extraction and fast atom bombardment mass spectrometry. Manz I; Dietrich I; Przybylski M; Niemeyer U; Pohl J; Hilgard P; Brock N Biomed Mass Spectrom; 1985 Sep; 12(9):545-53. PubMed ID: 2932183 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]