These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 30855624)

  • 1. Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge.
    Kim JH; Hansora D; Sharma P; Jang JW; Lee JS
    Chem Soc Rev; 2019 Apr; 48(7):1908-1971. PubMed ID: 30855624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic Techno-Economic Assessment of Medium-Scale Photoelectrochemical Fuel Generation Plants.
    Cattry A; Johnson H; Chatzikiriakou D; Haussener S
    Energy Fuels; 2024 Jul; 38(13):12058-12077. PubMed ID: 38984059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directly Photoexcited Oxides for Photoelectrochemical Water Splitting.
    Pan L; Vlachopoulos N; Hagfeldt A
    ChemSusChem; 2019 Oct; 12(19):4337-4352. PubMed ID: 31478349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical devices for solar water splitting - materials and challenges.
    Jiang C; Moniz SJA; Wang A; Zhang T; Tang J
    Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting.
    Yang W; Prabhakar RR; Tan J; Tilley SD; Moon J
    Chem Soc Rev; 2019 Oct; 48(19):4979-5015. PubMed ID: 31483417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
    Dogutan DK; Nocera DG
    Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Effect on Photoelectrochemical Water Splitting Toward Highly Solar to Hydrogen Efficiency.
    Kim H; Seo JW; Chung W; Narejo GM; Koo SW; Han JS; Yang J; Kim JY; In SI
    ChemSusChem; 2023 Jun; 16(11):e202202017. PubMed ID: 36840941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-by-Layer Assembly of Polyoxometalates for Photoelectrochemical (PEC) Water Splitting: Toward Modular PEC Devices.
    Jeon D; Kim H; Lee C; Han Y; Gu M; Kim BS; Ryu J
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40151-40161. PubMed ID: 29099571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The route for commercial photoelectrochemical water splitting: a review of large-area devices and key upscaling challenges.
    Vilanova A; Dias P; Lopes T; Mendes A
    Chem Soc Rev; 2024 Mar; 53(5):2388-2434. PubMed ID: 38288870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solar Panel Technologies for Light-to-Chemical Conversion.
    Andrei V; Wang Q; Uekert T; Bhattacharjee S; Reisner E
    Acc Chem Res; 2022 Dec; 55(23):3376-3386. PubMed ID: 36395337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A methodological review on material growth and synthesis of solar-driven water splitting photoelectrochemical cells.
    Park K; Kim YJ; Yoon T; David S; Song YM
    RSC Adv; 2019 Sep; 9(52):30112-30124. PubMed ID: 35530222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.
    Sivula K
    Chimia (Aarau); 2013; 67(3):155-61. PubMed ID: 23574955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Highly Versatile and Adaptable Artificial Leaf with Floatability and Planar Compact Design Applicable in Various Natural Environments.
    Kim S; Kim T; Lee S; Baek S; Park T; Yong K
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28714231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical water splitting in separate oxygen and hydrogen cells.
    Landman A; Dotan H; Shter GE; Wullenkord M; Houaijia A; Maljusch A; Grader GS; Rothschild A
    Nat Mater; 2017 Jun; 16(6):646-651. PubMed ID: 28272504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organometal Halide Perovskite-Based Photoelectrochemical Module Systems for Scalable Unassisted Solar Water Splitting.
    Choi H; Seo S; Yoon CJ; Ahn JB; Kim CS; Jung Y; Kim Y; Toma FM; Kim H; Lee S
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303106. PubMed ID: 37752753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.