These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 30855624)

  • 21. Materials Advances in Photocatalytic Solar Hydrogen Production: Integrating Systems and Economics for a Sustainable Future.
    Gunawan D; Zhang J; Li Q; Toe CY; Scott J; Antonietti M; Guo J; Amal R
    Adv Mater; 2024 Oct; 36(42):e2404618. PubMed ID: 38853427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.
    Jia J; Seitz LC; Benck JD; Huo Y; Chen Y; Ng JW; Bilir T; Harris JS; Jaramillo TF
    Nat Commun; 2016 Oct; 7():13237. PubMed ID: 27796309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water-splitting catalysis and solar fuel devices: artificial leaves on the move.
    Joya KS; Joya YF; Ocakoglu K; van de Krol R
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10426-37. PubMed ID: 23955876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges.
    Tamirat AG; Rick J; Dubale AA; Su WN; Hwang BJ
    Nanoscale Horiz; 2016 Jul; 1(4):243-267. PubMed ID: 32260645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thin film photoelectrodes for solar water splitting.
    He Y; Hamann T; Wang D
    Chem Soc Rev; 2019 Apr; 48(7):2182-2215. PubMed ID: 30667004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High Solar-to-Hydrogen Conversion Efficiency at pH 7 Based on a PV-EC Cell with an Oligomeric Molecular Anode.
    Shi Y; Hsieh TY; Hoque MA; Cambarau W; Narbey S; Gimbert-Suriñach C; Palomares E; Lanza M; Llobet A
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55856-55864. PubMed ID: 33258374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting.
    Zhou P; Navid IA; Ma Y; Xiao Y; Wang P; Ye Z; Zhou B; Sun K; Mi Z
    Nature; 2023 Jan; 613(7942):66-70. PubMed ID: 36600066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bridging electrocatalyst and cocatalyst studies for solar hydrogen production
    Saruyama M; Pelicano CM; Teranishi T
    Chem Sci; 2022 Mar; 13(10):2824-2840. PubMed ID: 35382478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting.
    Shi X; Cai L; Ma M; Zheng X; Park JH
    ChemSusChem; 2015 Oct; 8(19):3192-203. PubMed ID: 26365789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoelectrochemical hydrogen production from biomass derivatives and water.
    Lu X; Xie S; Yang H; Tong Y; Ji H
    Chem Soc Rev; 2014 Nov; 43(22):7581-93. PubMed ID: 24599050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanocatalysts for Solar Water Splitting and a Perspective on Hydrogen Economy.
    Grewe T; Meggouh M; Tüysüz H
    Chem Asian J; 2016 Jan; 11(1):22-42. PubMed ID: 26411303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Progress in Energy-Driven Water Splitting.
    Tee SY; Win KY; Teo WS; Koh LD; Liu S; Teng CP; Han MY
    Adv Sci (Weinh); 2017 May; 4(5):1600337. PubMed ID: 28546906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatially Separated Photosystem II and a Silicon Photoelectrochemical Cell for Overall Water Splitting: A Natural-Artificial Photosynthetic Hybrid.
    Wang W; Wang H; Zhu Q; Qin W; Han G; Shen JR; Zong X; Li C
    Angew Chem Int Ed Engl; 2016 Aug; 55(32):9229-33. PubMed ID: 27345863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implementation of ferroelectric materials in photocatalytic and photoelectrochemical water splitting.
    Li Y; Li J; Yang W; Wang X
    Nanoscale Horiz; 2020 Jul; 5(8):1174-1187. PubMed ID: 32613990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solar hydrogen generation: feature introduction.
    Ooi BS; Mi Z; Ryu SW
    Opt Express; 2019 Apr; 27(8):A292-A293. PubMed ID: 31052883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noble metal-free hydrogen evolution catalysts for water splitting.
    Zou X; Zhang Y
    Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition.
    Armaroli N; Balzani V
    Chemistry; 2016 Jan; 22(1):32-57. PubMed ID: 26584653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perovskite Oxide Based Electrodes for High-Performance Photoelectrochemical Water Splitting.
    Wang W; Xu M; Xu X; Zhou W; Shao Z
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):136-152. PubMed ID: 30790407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocatalysis.
    Huang H; Weng B; Zhang H; Lai F; Long J; Hofkens J; Douthwaite RE; Steele JA; Roeffaers MBJ
    J Phys Chem Lett; 2022 Jan; 13(1):25-41. PubMed ID: 34957833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts.
    Zhao Y; Ding C; Zhu J; Qin W; Tao X; Fan F; Li R; Li C
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9653-9658. PubMed ID: 32181560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.