BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 3085587)

  • 1. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture.
    Fogel MM; Taddeo AR; Fogel S
    Appl Environ Microbiol; 1986 Apr; 51(4):720-4. PubMed ID: 3085587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic degradation of mixtures of tetrachloroethylene, trichloroethylene, dichloroethylenes, and vinyl chloride by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1.
    Shim H; Ryoo D; Barbieri P; Wood TK
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):265-9. PubMed ID: 11499942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase.
    Anderson JE; McCarty PL
    Appl Environ Microbiol; 1997 Feb; 63(2):687-93. PubMed ID: 9023946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions.
    Vogel TM; McCarty PL
    Appl Environ Microbiol; 1985 May; 49(5):1080-3. PubMed ID: 3923927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures.
    Chang HL; Alvarez-Cohen L
    Appl Environ Microbiol; 1996 Sep; 62(9):3371-7. PubMed ID: 8795228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of microbial reductive dechlorination of TCE at a phytoremediation site.
    Godsy EM; Warren E; Paganelli VV
    Int J Phytoremediation; 2003; 5(1):73-87. PubMed ID: 12710236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive dechlorination of chlorinated ethene DNAPLs by a culture enriched from contaminated groundwater.
    Nielsen RB; Keasling JD
    Biotechnol Bioeng; 1999 Jan; 62(2):160-5. PubMed ID: 10099525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robustness of an aerobic metabolically vinyl chloride degrading bacterial enrichment culture.
    Zhao HP; Schmidt KR; Lohner S; Tiehm A
    Water Sci Technol; 2011; 64(9):1796-803. PubMed ID: 22020471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of isotopic enrichment factors for the biodegradation of chlorinated ethenes using a parameter estimation model: toward an improved quantification of biodegradation.
    Morrill PL; Sleep BE; Slater GF; Edwards EA; Lollar BS
    Environ Sci Technol; 2006 Jun; 40(12):3886-92. PubMed ID: 16830557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers.
    Shao Y; Hatzinger PB; Streger SH; Rezes RT; Chu KH
    Biodegradation; 2019 Jun; 30(2-3):173-190. PubMed ID: 30989421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylene inhibition of trichloroethene and vinyl chloride reductive dechlorination.
    Pon G; Hyman MR; Semprini L
    Environ Sci Technol; 2003 Jul; 37(14):3181-8. PubMed ID: 12901668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride.
    Duhamel M; Wehr SD; Yu L; Rizvi H; Seepersad D; Dworatzek S; Cox EE; Edwards EA
    Water Res; 2002 Oct; 36(17):4193-202. PubMed ID: 12420924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions.
    Kästner M
    Appl Environ Microbiol; 1991 Jul; 57(7):2039-46. PubMed ID: 1892393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by "Dehalococcoides ethenogenes" 195.
    Maymó-Gatell X; Anguish T; Zinder SH
    Appl Environ Microbiol; 1999 Jul; 65(7):3108-13. PubMed ID: 10388710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms.
    Cupples AM; Spormann AM; McCarty PL
    Environ Sci Technol; 2004 Sep; 38(18):4768-74. PubMed ID: 15487786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare?
    Lee SW; Keeney DR; Lim DH; Dispirito AA; Semrau JD
    Appl Environ Microbiol; 2006 Dec; 72(12):7503-9. PubMed ID: 17012599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria.
    Findlay M; Smoler DF; Fogel S; Mattes TE
    Environ Sci Technol; 2016 Apr; 50(7):3617-25. PubMed ID: 26918370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes.
    Morrill PL; Lacrampe-Couloume G; Slater GF; Sleep BE; Edwards EA; McMaster ML; Major DW; Sherwood Lollar B
    J Contam Hydrol; 2005 Feb; 76(3-4):279-93. PubMed ID: 15683884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes.
    Chu KH; Mahendra S; Song DL; Conrad ME; Alvarez-Cohen L
    Environ Sci Technol; 2004 Jun; 38(11):3126-30. PubMed ID: 15224745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.