These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 30855937)
1. Applicable Superamphiphobic Ni/Cu Surface with High Liquid Repellency Enabled by the Electrochemical-Deposited Dual-Scale Structure. Wang T; Cai J; Wu Y; Hang T; Hu A; Ling H; Li M ACS Appl Mater Interfaces; 2019 Mar; 11(12):11106-11111. PubMed ID: 30855937 [TBL] [Abstract][Full Text] [Related]
2. 3D mossy structures of zinc filaments: A facile strategy for superamphiphobic surface design. Zhi S; Wang G; Zeng Z; Zhu L; Liu Z; Zhang D; Xu K; Xue Q J Colloid Interface Sci; 2018 Sep; 526():106-113. PubMed ID: 29723791 [TBL] [Abstract][Full Text] [Related]
3. Designing Transparent Micro/Nano Re-Entrant-Coordinated Superamphiphobic Surfaces with Ultralow Solid/Liquid Adhesion. Li X; Wang D; Tan Y; Yang J; Deng X ACS Appl Mater Interfaces; 2019 Aug; 11(32):29458-29465. PubMed ID: 31328909 [TBL] [Abstract][Full Text] [Related]
4. Efficient and Facile Method of Preparing Superamphiphobic Surfaces on Cu Substrates. Zhu J; Liao K ACS Appl Mater Interfaces; 2021 Aug; 13(31):37830-37839. PubMed ID: 34323070 [TBL] [Abstract][Full Text] [Related]
5. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
6. Robust Superamphiphobic Fabrics with Excellent Hot Liquid Repellency and Hot Water Vapor Resistance. Tian N; Chen K; Wei J; Zhang J Langmuir; 2022 May; 38(18):5891-5899. PubMed ID: 35482598 [TBL] [Abstract][Full Text] [Related]
7. Superamphiphobic Cu/CuO Micropillar Arrays with High Repellency Towards Liquids of Extremely High Viscosity and Low Surface Tension. Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J Sci Rep; 2019 Jan; 9(1):702. PubMed ID: 30679771 [TBL] [Abstract][Full Text] [Related]
8. Experimental and fluid flow simulation studies of laser-electrochemical hybrid manufacturing of micro-nano symbiotic superamphiphobic surfaces. Liu Y; Liu X; Zhang Z; Lu J; Wang Y; Xu K; Zhu H; Wang B; Lin L; Xue W J Chem Phys; 2023 Sep; 159(11):. PubMed ID: 37712795 [TBL] [Abstract][Full Text] [Related]
9. Superhydrophobic and superoleophobic surface by electrodeposition on magnesium alloy substrate: Wettability and corrosion inhibition. Liu Y; Li S; Wang Y; Wang H; Gao K; Han Z; Ren L J Colloid Interface Sci; 2016 Sep; 478():164-71. PubMed ID: 27289431 [TBL] [Abstract][Full Text] [Related]
10. Effect of superamphiphobic macrotextures on dynamics of viscous liquid droplets. Raiyan A; Mclaughlin TS; Annavarapu RK; Sojoudi H Sci Rep; 2018 Oct; 8(1):15344. PubMed ID: 30337604 [TBL] [Abstract][Full Text] [Related]
11. Multistimuli-Responsive Microstructured Superamphiphobic Surfaces with Large-Range, Reversible Switchable Wettability for Oil. Wang H; Zhang Z; Wang Z; Liang Y; Cui Z; Zhao J; Li X; Ren L ACS Appl Mater Interfaces; 2019 Aug; 11(31):28478-28486. PubMed ID: 31307191 [TBL] [Abstract][Full Text] [Related]
12. Durable Superamphiphobic and Photocatalytic Fabrics: Tackling the Loss of Super-Non-Wettability Due to Surface Organic Contamination. Wang W; Liu R; Chi H; Zhang T; Xu Z; Zhao Y ACS Appl Mater Interfaces; 2019 Sep; 11(38):35327-35332. PubMed ID: 31424912 [TBL] [Abstract][Full Text] [Related]
13. Two-Step Process To Create "Roll-Off" Superamphiphobic Paper Surfaces. Jiang L; Tang Z; Clinton RM; Breedveld V; Hess DW ACS Appl Mater Interfaces; 2017 Mar; 9(10):9195-9203. PubMed ID: 28225585 [TBL] [Abstract][Full Text] [Related]
14. Clay-based superamphiphobic coatings with low sliding angles for viscous liquids. Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J J Colloid Interface Sci; 2019 Mar; 540():228-236. PubMed ID: 30641400 [TBL] [Abstract][Full Text] [Related]
15. Durable superamphiphobic coatings with high static and dynamic repellency towards liquids with low surface tension and high viscosity. Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J J Colloid Interface Sci; 2020 Oct; 578():262-272. PubMed ID: 32531556 [TBL] [Abstract][Full Text] [Related]
16. Springtail-Inspired Superamphiphobic Ordered Nanohoodoo Arrays with Quasi-Doubly Reentrant Structures. Dong S; Zhang X; Li Q; Liu C; Ye T; Liu J; Xu H; Zhang X; Liu J; Jiang C; Xue L; Yang S; Xiao X Small; 2020 May; 16(19):e2000779. PubMed ID: 32285646 [TBL] [Abstract][Full Text] [Related]
17. Selective Fabrication of Robust and Multifunctional Super Nonwetting Surfaces by Diverse Modifications of Zirconia-Ceria Nanocomposites. Esmaeilzadeh P; Zandi A; Ghazanfari MH; Khezrnejad A; Fatemi M; Molaei Dehkordi A Langmuir; 2022 Aug; 38(30):9195-9209. PubMed ID: 35867863 [TBL] [Abstract][Full Text] [Related]
18. Scalable Preparation of Superamphiphobic Coatings with Ultralow Sliding Angles and High Liquid Impact Resistance. Dong S; Li Y; Tian N; Li B; Yang Y; Li L; Zhang J ACS Appl Mater Interfaces; 2018 Dec; 10(49):41878-41882. PubMed ID: 30475584 [TBL] [Abstract][Full Text] [Related]
19. Surface topographies of biomimetic superamphiphobic materials: design criteria, fabrication and performance. Gou X; Guo Z Adv Colloid Interface Sci; 2019 Jul; 269():87-121. PubMed ID: 31059923 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Stretchable Superamphiphobic Surfaces with Deformation-Induced Rearrangeable Structures. Zhou X; Liu J; Liu W; Steffen W; Butt HJ Adv Mater; 2022 Mar; 34(10):e2107901. PubMed ID: 34989448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]