These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 30855942)

  • 1. Designing Janus Ligand Shells on PbS Quantum Dots using Ligand-Ligand Cooperativity.
    Bronstein ND; Martinez MS; Kroupa DM; Vörös M; Lu H; Brawand NP; Nozik AJ; Sellinger A; Galli G; Beard MC
    ACS Nano; 2019 Apr; 13(4):3839-3846. PubMed ID: 30855942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Absorbance Enhancement in PbS QD/Cinnamate Ligand Complexes.
    Kroupa DM; Vörös M; Brawand NP; Bronstein N; McNichols BW; Castaneda CV; Nozik AJ; Sellinger A; Galli G; Beard MC
    J Phys Chem Lett; 2018 Jun; 9(12):3425-3433. PubMed ID: 29857647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsaturated Ligands Seed an Order to Disorder Transition in Mixed Ligand Shells of CdSe/CdS Quantum Dots.
    Balan AD; Olshansky JH; Horowitz Y; Han HL; O'Brien EA; Tang L; Somorjai GA; Alivisatos AP
    ACS Nano; 2019 Dec; 13(12):13784-13796. PubMed ID: 31751115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyroelectricity of Lead Sulfide (PbS) Quantum Dot Films Induced by Janus-Ligand Shells.
    Huang Z; Hao J; Blackburn JL; Beard MC
    ACS Nano; 2021 Sep; 15(9):14965-14971. PubMed ID: 34402613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the Redox Activity of PbS Quantum Dots by Tuning Electrostatic Interactions at the Quantum Dot/Solvent Interface.
    He C; Weinberg DJ; Nepomnyashchii AB; Lian S; Weiss EA
    J Am Chem Soc; 2016 Jul; 138(28):8847-54. PubMed ID: 27341608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exchange equilibria of carboxylate-terminated ligands at PbS nanocrystal surfaces.
    Kessler ML; Starr HE; Knauf RR; Rountree KJ; Dempsey JL
    Phys Chem Chem Phys; 2018 Sep; 20(36):23649-23655. PubMed ID: 30191247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Ligand Surface Chemistry of Excited PbS Quantum Dots.
    Kennehan ER; Munson KT; Doucette GS; Marshall AR; Beard MC; Asbury JB
    J Phys Chem Lett; 2020 Mar; 11(6):2291-2297. PubMed ID: 32131595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and Packing in Two-Component Colloidal Quantum Dot Ligand Shells: Linear versus Branched Carboxylates.
    De Nolf K; Cosseddu SM; Jasieniak JJ; Drijvers E; Martins JC; Infante I; Hens Z
    J Am Chem Soc; 2017 Mar; 139(9):3456-3464. PubMed ID: 28234474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage.
    Kroupa DM; Arias DH; Blackburn JL; Carroll GM; Granger DB; Anthony JE; Beard MC; Johnson JC
    Nano Lett; 2018 Feb; 18(2):865-873. PubMed ID: 29364676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of the Redox Activity of Quantum Dots through Introduction of Fluoroalkanethiolates into Their Ligand Shells.
    Weinberg DJ; He C; Weiss EA
    J Am Chem Soc; 2016 Feb; 138(7):2319-26. PubMed ID: 26820492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids.
    Zarghami MH; Liu Y; Gibbs M; Gebremichael E; Webster C; Law M
    ACS Nano; 2010 Apr; 4(4):2475-85. PubMed ID: 20359235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification.
    Kroupa DM; Vörös M; Brawand NP; McNichols BW; Miller EM; Gu J; Nozik AJ; Sellinger A; Galli G; Beard MC
    Nat Commun; 2017 May; 8():15257. PubMed ID: 28508866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p-i-n Heterojunction Solar Cells.
    Beygi H; Sajjadi SA; Babakhani A; Young JF; van Veggel FCJM
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30283-30295. PubMed ID: 30107115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots.
    Lai LH; Protesescu L; Kovalenko MV; Loi MA
    Phys Chem Chem Phys; 2014 Jan; 16(2):736-42. PubMed ID: 24270835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemical environments of oleate species within samples of oleate-coated PbS quantum dots.
    Cass LC; Malicki M; Weiss EA
    Anal Chem; 2013 Jul; 85(14):6974-9. PubMed ID: 23786216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of Composition Dependent Ligand Exchange on the Surfaces of Colloidal Indium Phosphide Quantum Dots.
    Calvin JJ; O'Brien EA; Sedlak AB; Balan AD; Alivisatos AP
    ACS Nano; 2021 Jan; 15(1):1407-1420. PubMed ID: 33404231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.
    Chang J; Ogomi Y; Ding C; Zhang YH; Toyoda T; Hayase S; Katayama K; Shen Q
    Phys Chem Chem Phys; 2017 Mar; 19(9):6358-6367. PubMed ID: 27901148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shell thickness effects on quantum dot brightness and energy transfer.
    Chern M; Nguyen TT; Mahler AH; Dennis AM
    Nanoscale; 2017 Nov; 9(42):16446-16458. PubMed ID: 29063928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films.
    Zhao H; Fan Z; Liang H; Selopal GS; Gonfa BA; Jin L; Soudi A; Cui D; Enrichi F; Natile MM; Concina I; Ma D; Govorov AO; Rosei F; Vomiero A
    Nanoscale; 2014 Jun; 6(12):7004-11. PubMed ID: 24839954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.