These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 30856030)

  • 1. An electronic travel guide for visually impaired - vehicle board recognition system through computer vision techniques.
    Noorjahan M; Punitha A
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):238-241. PubMed ID: 30856030
    [No Abstract]   [Full Text] [Related]  

  • 2. Indoor Navigation Systems for Visually Impaired Persons: Mapping the Features of Existing Technologies to User Needs.
    Plikynas D; Žvironas A; Budrionis A; Gudauskis M
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assistive device using computer vision and image processing for visually impaired; review and current status.
    Patel K; Parmar B
    Disabil Rehabil Assist Technol; 2022 Apr; 17(3):290-297. PubMed ID: 32608288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survey and analysis of the current status of research in the field of outdoor navigation for the blind.
    Lian Y; Liu DE; Ji WZ
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1657-1675. PubMed ID: 37402242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Range sensor-based assistive technology solutions for people with visual impairment: a review.
    Manzoor S; Iftikhar S; Ayub I; Shahid A; Haq AU; Muhammad W; Shafique M
    Disabil Rehabil Assist Technol; 2024 Apr; 19(3):576-584. PubMed ID: 36036390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of Navigation Assistive Tools and Technologies for the Visually Impaired.
    Messaoudi MD; Menelas BJ; Mcheick H
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When Ultrasonic Sensors and Computer Vision Join Forces for Efficient Obstacle Detection and Recognition.
    Mocanu B; Tapu R; Zaharia T
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation.
    Yang K; Wang K; Bergasa LM; Romera E; Hu W; Sun D; Sun J; Cheng R; Chen T; López E
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Object detection and recognition: using deep learning to assist the visually impaired.
    Bhandari A; Prasad PWC; Alsadoon A; Maag A
    Disabil Rehabil Assist Technol; 2021 Apr; 16(3):280-288. PubMed ID: 31694420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Systematic Review of Urban Navigation Systems for Visually Impaired People.
    El-Taher FE; Taha A; Courtney J; Mckeever S
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereo Vision Based Sensory Substitution for the Visually Impaired.
    Caraiman S; Zvoristeanu O; Burlacu A; Herghelegiu P
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31226796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobile assistive technologies for the visually impaired.
    Hakobyan L; Lumsden J; O'Sullivan D; Bartlett H
    Surv Ophthalmol; 2013; 58(6):513-28. PubMed ID: 24054999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Urban Mobility Assistive Device for Visually Impaired Pedestrians Using a Smartphone and a Tactile-Foot Interface.
    Tachiquin R; Velázquez R; Del-Valle-Soto C; Gutiérrez CA; Carrasco M; De Fazio R; Trujillo-León A; Visconti P; Vidal-Verdú F
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An interactive wireless communication system for visually impaired people using city bus transport.
    Wang HL; Chen YP; Rau CL; Yu CH
    Int J Environ Res Public Health; 2014 Apr; 11(5):4560-71. PubMed ID: 24776720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A navigation system for the visually impaired an intelligent white cane.
    Fukasawa AJ; Magatani K
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4760-3. PubMed ID: 23366992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assistive obstacle detection and navigation devices for vision-impaired users.
    Ong SK; Zhang J; Nee AY
    Disabil Rehabil Assist Technol; 2013 Sep; 8(5):409-16. PubMed ID: 23350879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Wearable Navigation Device for Visually Impaired People Based on the Real-Time Semantic Visual SLAM System.
    Chen Z; Liu X; Kojima M; Huang Q; Arai T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Obstacle Detection System for Navigation Assistance of Visually Impaired People Based on Deep Learning Techniques.
    Said Y; Atri M; Albahar MA; Ben Atitallah A; Alsariera YA
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A navigation system for the visually impaired using colored navigation lines and RFID tags.
    Seto FT
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():831-4. PubMed ID: 19963980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensor-Based Assistive Devices for Visually-Impaired People: Current Status, Challenges, and Future Directions.
    Elmannai W; Elleithy K
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28287451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.