BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30856291)

  • 1. Regulating Bulk-Heterojunction Molecular Orientations through Surface Free Energy Control of Hole-Transporting Layers for High-Performance Organic Solar Cells.
    Wang J; Zheng Z; Zhang D; Zhang J; Zhou J; Liu J; Xie S; Zhao Y; Zhang Y; Wei Z; Hou J; Tang Z; Zhou H
    Adv Mater; 2019 Apr; 31(17):e1806921. PubMed ID: 30856291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS
    Lin Y; Adilbekova B; Firdaus Y; Yengel E; Faber H; Sajjad M; Zheng X; Yarali E; Seitkhan A; Bakr OM; El-Labban A; Schwingenschlögl U; Tung V; McCulloch I; Laquai F; Anthopoulos TD
    Adv Mater; 2019 Nov; 31(46):e1902965. PubMed ID: 31566264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilely Modified Nickel-Based Hole Transporting Layers for Organic Solar Cells with 19.12% Efficiency and Enhanced Stability.
    Wang Z; Li B; Liu B; Lee JW; Bai Q; Yang W; Wang J; Yang J; Zhang X; Sun H; Yang X; Kim BJ; Guo X
    Small; 2024 Apr; ():e2400915. PubMed ID: 38597683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-Processed PEDOT:PSS/MoS
    Ramasamy MS; Ryu KY; Lim JW; Bibi A; Kwon H; Lee JE; Kim DH; Kim K
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31527441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-La-Based Hole-Transporting Layers for Binary Organic Solar Cells with 18.82 % Efficiency.
    Zhang G; Chen Q; Zhang Z; Fang J; Zhao C; Wei Y; Li W
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202216304. PubMed ID: 36448962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Organic Solar Cells Enabled by the Incorporation of a Sulfonated Graphene Doped PEDOT:PSS Interlayer.
    Pei S; Xiong X; Zhong W; Xue X; Zhang M; Hao T; Zhang Y; Liu F; Zhu L
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34814-34821. PubMed ID: 35876251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient Organic Solar Cells Consisting of Double Bulk Heterojunction Layers.
    Huang J; Wang H; Yan K; Zhang X; Chen H; Li CZ; Yu J
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28295706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting Efficiency and Stability of Organic Solar Cells Using Ultralow-Cost BiOCl Nanoplates as Hole Transporting Layers.
    Liu B; Wang Y; Chen P; Zhang X; Sun H; Tang Y; Liao Q; Huang J; Wang H; Meng H; Guo X
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33505-33514. PubMed ID: 31429258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the Electron Acceptor Nature on the Durability and Nanomorphological Stability of Bulk Heterojunction Active Layers for Organic Solar Cells.
    Vohra V; Matsunaga Y; Takada T; Kiyokawa A; Barba L; Porzio W
    Small; 2021 Jan; 17(2):e2004168. PubMed ID: 33325643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells.
    Zhou H; Zhang Y; Mai CK; Collins SD; Nguyen TQ; Bazan GC; Heeger AJ
    Adv Mater; 2014 Feb; 26(5):780-5. PubMed ID: 24170587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dithiapyrannylidenes as efficient hole collection interfacial layers in organic solar cells.
    Berny S; Tortech L; Véber M; Fichou D
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3059-68. PubMed ID: 21028838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Annealing-Insensitive, Alcohol-Processed MoO
    Song C; Huang X; Zhan T; Ding L; Li Y; Xue X; Lin X; Peng H; Cai P; Duan C; Chen J
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40851-40861. PubMed ID: 36044804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient and Stable ITO-Free Organic Solar Cells Based on Squaraine N-Doped Quaternary Bulk Heterojunction.
    Fan Q; Xiao Q; Zhang H; Heng J; Xie M; Wei Z; Jia X; Liu X; Kang Z; Li CZ; Li S; Zhang T; Zhou Y; Huang J; Li Z
    Adv Mater; 2024 Jan; 36(3):e2307920. PubMed ID: 37823840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Performance of Nonfullerene Organic Solar Cells over 13% by Employing Silver Nanowires-Doped PEDOT:PSS Composite Interface.
    Peng R; Wan Z; Song W; Yan T; Qiao Q; Yang S; Ge Z; Wang M
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42447-42454. PubMed ID: 31625386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing Nanostructured Donor/Acceptor Bulk Heterojunctions via Interfacial Templates for Efficient Organic Photovoltaics.
    Wang Z; Zhou Y; Miyadera T; Chikamatsu M; Yoshida Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43893-43901. PubMed ID: 29172420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-quality WS
    Wang X; Liu P; Yap B; Xia R; Wong WY; He Z
    Nanoscale; 2021 Oct; 13(39):16589-16597. PubMed ID: 34585178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carrier losses in non-geminate charge-transferred states of nonfullerene acceptor-based organic solar cells.
    Oh CM; Lee J; Park SH; Hwang IW
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119227. PubMed ID: 33248892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
    Naveed HB; Zhou K; Ma W
    Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Environmentally Affected Hole-Transport Layers on Spatial Homogeneity and Charge-Transport Dynamics of Organic Solar Cells.
    Chien HT; Pilat F; Griesser T; Fitzek H; Poelt P; Friedel B
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10102-10114. PubMed ID: 29488376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of organic solar cells efficiency with acetic acid modulated poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layers.
    Oh SH; Heo SJ; Kim HJ
    J Nanosci Nanotechnol; 2014 Jul; 14(7):5331-4. PubMed ID: 24758027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.