These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30856334)

  • 1. Tuning Chemical Interface Damping: Interfacial Electronic Effects of Adsorbate Molecules and Sharp Tips of Single Gold Bipyramids.
    Lee SY; Tsalu PV; Kim GW; Seo MJ; Hong JW; Ha JW
    Nano Lett; 2019 Apr; 19(4):2568-2574. PubMed ID: 30856334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods.
    Moon SW; Tsalu PV; Ha JW
    Phys Chem Chem Phys; 2018 Aug; 20(34):22197-22202. PubMed ID: 30116800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-particle correlation study: chemical interface damping induced by biotinylated proteins with sulfur in plasmonic gold nanorods.
    Moon SW; Ha JW
    Phys Chem Chem Phys; 2019 Mar; 21(13):7061-7066. PubMed ID: 30874711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Interface Damping Depends on Electrons Reaching the Surface.
    Foerster B; Joplin A; Kaefer K; Celiksoy S; Link S; Sönnichsen C
    ACS Nano; 2017 Mar; 11(3):2886-2893. PubMed ID: 28301133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Jeon HB; Park S; Ryu KR; Ghosh SK; Jung J; Park KM; Ha JW
    Chem Sci; 2021 Apr; 12(20):7115-7124. PubMed ID: 34123339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Photoreversible Tuning of Chemical Interface Damping in Single Gold Nanorods Through Cucurbit[8]uril-Based Host-Guest Interactions.
    Lee J; Ha JW
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):45763-45770. PubMed ID: 39143515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single gold bipyramids with sharp tips as sensitive single particle orientation sensors in biological studies.
    Lee SY; Han Y; Hong JW; Ha JW
    Nanoscale; 2017 Aug; 9(33):12060-12067. PubMed ID: 28795734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the capping material on pyridine-induced chemical interface damping in single gold nanorods.
    Moon SW; Ha JW
    Analyst; 2019 Apr; 144(8):2679-2683. PubMed ID: 30855047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous localized surface plasmon resonance inflection points for enhanced sensitivity and tracking plasmon damping in single gold bipyramids.
    Tsalu PV; Kim GW; Hong JW; Ha JW
    Nanoscale; 2018 Jul; 10(26):12554-12563. PubMed ID: 29932189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices.
    Jeon HB; Tsalu PV; Ha JW
    Sci Rep; 2019 Sep; 9(1):13635. PubMed ID: 31541135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Hong YA; Ha JW
    Analyst; 2023 Aug; 148(16):3719-3723. PubMed ID: 37458613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold Ultrathin Nanorods with Controlled Aspect Ratios and Surface Modifications: Formation Mechanism and Localized Surface Plasmon Resonance.
    Takahata R; Yamazoe S; Koyasu K; Imura K; Tsukuda T
    J Am Chem Soc; 2018 May; 140(21):6640-6647. PubMed ID: 29694041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concave gold bipyramids bound with multiple high-index facets: improved Raman and catalytic activities.
    Kang X; Ruan Q; Zhang H; Bao F; Guo J; Tang M; Cheng S; Wang J
    Nanoscale; 2017 May; 9(18):5879-5886. PubMed ID: 28430275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial States Cause Equal Decay of Plasmons and Hot Electrons at Gold-Metal Oxide Interfaces.
    Foerster B; Hartelt M; Collins SSE; Aeschlimann M; Link S; Sönnichsen C
    Nano Lett; 2020 May; 20(5):3338-3343. PubMed ID: 32216365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning Chemical Interface Damping: Competition between Surface Damping Pathways in Amalgamated Gold Nanorods Coated with Mesoporous Silica Shells.
    Alizar YY; Ramasamy M; Kim GW; Ha JW
    JACS Au; 2023 Nov; 3(11):3247-3258. PubMed ID: 38034978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene.
    Hoggard A; Wang LY; Ma L; Fang Y; You G; Olson J; Liu Z; Chang WS; Ajayan PM; Link S
    ACS Nano; 2013 Dec; 7(12):11209-17. PubMed ID: 24266755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Particle Spectroelectrochemistry: Electrochemical Approaches for Tuning Chemical Interfaces and Plasmon Damping in Single Gold Nanorods.
    Ramasamy M; Ha JW
    J Phys Chem Lett; 2023 Jun; 14(25):5768-5775. PubMed ID: 37326616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.