BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 30856357)

  • 1. CRISPR-Cas in Streptococcus pyogenes.
    Le Rhun A; Escalera-Maurer A; Bratovič M; Charpentier E
    RNA Biol; 2019 Apr; 16(4):380-389. PubMed ID: 30856357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The endless battle between phages and CRISPR-Cas systems in
    Philippe C; Moineau S
    Biochem Cell Biol; 2021 Aug; 99(4):397-402. PubMed ID: 33534660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular organization of the type II-A CRISPR adaptation module and its interaction with Cas9 via Csn2.
    Ka D; Jang DM; Han BW; Bae E
    Nucleic Acids Res; 2018 Oct; 46(18):9805-9815. PubMed ID: 30102386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals.
    Mojica FJM; Montoliu L
    Trends Microbiol; 2016 Oct; 24(10):811-820. PubMed ID: 27401123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9: From a bacterial immune system to genome-edited human cells in clinical trials.
    Kick L; Kirchner M; Schneider S
    Bioengineered; 2017 May; 8(3):280-286. PubMed ID: 28287876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9.
    Hynes AP; Rousseau GM; Lemay ML; Horvath P; Romero DA; Fremaux C; Moineau S
    Nat Microbiol; 2017 Oct; 2(10):1374-1380. PubMed ID: 28785032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria.
    Bernheim A; Calvo-Villamañán A; Basier C; Cui L; Rocha EPC; Touchon M; Bikard D
    Nat Commun; 2017 Dec; 8(1):2094. PubMed ID: 29234047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What history tells us XXXIX. CRISPR-Cas: From a prokaryotic immune system to a universal genome editing tool.
    Morange M
    J Biosci; 2015 Dec; 40(5):829-32. PubMed ID: 26648028
    [No Abstract]   [Full Text] [Related]  

  • 9. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of the CRISPR-Cas9 system in cancer biology.
    Sánchez-Rivera FJ; Jacks T
    Nat Rev Cancer; 2015 Jul; 15(7):387-95. PubMed ID: 26040603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplex genome engineering using CRISPR/Cas systems.
    Cong L; Ran FA; Cox D; Lin S; Barretto R; Habib N; Hsu PD; Wu X; Jiang W; Marraffini LA; Zhang F
    Science; 2013 Feb; 339(6121):819-23. PubMed ID: 23287718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction and diversity of tracrRNAs from type II CRISPR-Cas systems.
    Chyou TY; Brown CM
    RNA Biol; 2019 Apr; 16(4):423-434. PubMed ID: 29995560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cas9 immunity creates challenges for CRISPR gene editing therapies.
    Crudele JM; Chamberlain JS
    Nat Commun; 2018 Aug; 9(1):3497. PubMed ID: 30158648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications.
    Friedland AE; Baral R; Singhal P; Loveluck K; Shen S; Sanchez M; Marco E; Gotta GM; Maeder ML; Kennedy EM; Kornepati AV; Sousa A; Collins MA; Jayaram H; Cullen BR; Bumcrot D
    Genome Biol; 2015 Nov; 16():257. PubMed ID: 26596280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spacer Acquisition Rates Determine the Immunological Diversity of the Type II CRISPR-Cas Immune Response.
    Heler R; Wright AV; Vucelja M; Doudna JA; Marraffini LA
    Cell Host Microbe; 2019 Feb; 25(2):242-249.e3. PubMed ID: 30709780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of the CRISPR-Cas9 system in
    Ho J; Zhao M; Wojcik S; Taiaroa G; Butler M; Poulter R
    J Med Microbiol; 2020 Mar; 69(3):478-486. PubMed ID: 31935181
    [No Abstract]   [Full Text] [Related]  

  • 19. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation.
    Wei Y; Terns RM; Terns MP
    Genes Dev; 2015 Feb; 29(4):356-61. PubMed ID: 25691466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of CRISPR-Cas-Mediated Mechanisms of Adaptive Immunity in Prokaryotes and Their Application in Biotechnology.
    Savitskaya EE; Musharova OS; Severinov KV
    Biochemistry (Mosc); 2016 Jul; 81(7):653-61. PubMed ID: 27449612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.