BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30856444)

  • 1. Microbial mechanism underlying high and stable methane oxidation rates during mudflat reclamation with long-term rice cultivation: Illumina high-throughput sequencing-based data analysis.
    Zhang Y; Li Q; Dai Q; Kang Y
    J Hazard Mater; 2019 Jun; 371():332-341. PubMed ID: 30856444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Change in Enzyme Activity and Bacterial Community with long-term rice Cultivation in Mudflats.
    Zhang Y; Li Q; Chen Y; Dai Q; Hu J
    Curr Microbiol; 2019 Mar; 76(3):361-369. PubMed ID: 30684025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mudflat reclamation causes changes of gene abundance in nitrogen cycle under long-term rice cultivation.
    Zhang Y; Li Q; Chen Y; Dai Q; Hu J
    J Basic Microbiol; 2019 May; 59(5):496-503. PubMed ID: 30900740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mudflat reclamation causes change in the composition of fungal communities under long-term rice cultivation.
    Zhang Y; Li Q; Chen Y; Dai Q; Hu J
    Can J Microbiol; 2019 Jul; 65(7):530-537. PubMed ID: 30925229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils].
    Zheng Y; Jia Z
    Wei Sheng Wu Xue Bao; 2013 Feb; 53(2):173-84. PubMed ID: 23627110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Community Structure of Active Aerobic Methanotrophs in Red Mangrove (Kandelia obovata) Soils Under Different Frequency of Tides.
    Shiau YJ; Cai Y; Lin YT; Jia Z; Chiu CY
    Microb Ecol; 2018 Apr; 75(3):761-770. PubMed ID: 29022063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil.
    Ma K; Lu Y
    FEMS Microbiol Ecol; 2011 Mar; 75(3):446-56. PubMed ID: 21198683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere.
    Shrestha M; Shrestha PM; Frenzel P; Conrad R
    ISME J; 2010 Dec; 4(12):1545-56. PubMed ID: 20596069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric Methane Oxidizers Are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of China.
    Cai Y; Zhou X; Shi L; Jia Z
    Microb Ecol; 2020 Nov; 80(4):859-871. PubMed ID: 32803363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration and enrichment of methane-oxidizing bacteria derived from a rice paddy field emitting highly concentrated methane.
    Yasuda S; Toyoda R; Agrawal S; Suenaga T; Riya S; Hori T; Lackner S; Hosomi M; Terada A
    J Biosci Bioeng; 2020 Sep; 130(3):311-318. PubMed ID: 32487498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice.
    Eller G; Frenzel P
    Appl Environ Microbiol; 2001 Jun; 67(6):2395-403. PubMed ID: 11375143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. USC
    Cheng XY; Liu XY; Wang HM; Su CT; Zhao R; Bodelier PLE; Wang WQ; Ma LY; Lu XL
    Microbiol Spectr; 2021 Sep; 9(1):e0082021. PubMed ID: 34406837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community.
    Breidenbach B; Blaser MB; Klose M; Conrad R
    Environ Microbiol; 2016 Sep; 18(9):2868-85. PubMed ID: 26337675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ.
    Qiu Q; Noll M; Abraham WR; Lu Y; Conrad R
    ISME J; 2008 Jun; 2(6):602-14. PubMed ID: 18385771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem.
    Lee HJ; Kim SY; Kim PJ; Madsen EL; Jeon CO
    FEMS Microbiol Ecol; 2014 Apr; 88(1):195-212. PubMed ID: 24410836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil.
    Henckel T; Roslev P; Conrad R
    Environ Microbiol; 2000 Dec; 2(6):666-79. PubMed ID: 11214799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes.
    Ren G; Ma A; Zhang Y; Deng Y; Zheng G; Zhuang X; Zhuang G; Fortin D
    Environ Microbiol; 2018 Jul; 20(7):2370-2385. PubMed ID: 29624877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.
    Reumer M; Harnisz M; Lee HJ; Reim A; Grunert O; Putkinen A; Fritze H; Bodelier PLE; Ho A
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limited effect of planting transgenic rice on the soil microbiome studied by continuous
    Wang J; Chapman SJ; Ye Q; Yao H
    Appl Microbiol Biotechnol; 2019 May; 103(10):4217-4227. PubMed ID: 30911786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncultivated Methylocystis Species in Paddy Soil Include Facultative Methanotrophs that Utilize Acetate.
    Leng L; Chang J; Geng K; Lu Y; Ma K
    Microb Ecol; 2015 Jul; 70(1):88-96. PubMed ID: 25475784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.