These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 30856449)

  • 1. Producing cadmium-free Indica rice by overexpressing OsHMA3.
    Lu C; Zhang L; Tang Z; Huang XY; Ma JF; Zhao FJ
    Environ Int; 2019 May; 126():619-626. PubMed ID: 30856449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars.
    Yan J; Wang P; Wang P; Yang M; Lian X; Tang Z; Huang CF; Salt DE; Zhao FJ
    Plant Cell Environ; 2016 Sep; 39(9):1941-54. PubMed ID: 27038090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of Rice
    Zhang L; Gao C; Chen C; Zhang W; Huang XY; Zhao FJ
    Environ Sci Technol; 2020 Aug; 54(16):10100-10108. PubMed ID: 32697086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice.
    Liu CL; Gao ZY; Shang LG; Yang CH; Ruan BP; Zeng DL; Guo LB; Zhao FJ; Huang CF; Qian Q
    J Integr Plant Biol; 2020 Mar; 62(3):314-329. PubMed ID: 30791211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain.
    Sui F; Zhao D; Zhu H; Gong Y; Tang Z; Huang XY; Zhang G; Zhao FJ
    J Exp Bot; 2019 May; 70(10):2857-2871. PubMed ID: 30840768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in cadmium accumulation between indica and japonica rice cultivars in the reproductive stage.
    Chen H; Yang Y; Ye Y; Tao L; Fu X; Liu B; Wu Y
    Ecotoxicol Environ Saf; 2019 Dec; 186():109795. PubMed ID: 31648160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain.
    Chang JD; Huang S; Konishi N; Wang P; Chen J; Huang XY; Ma JF; Zhao FJ
    J Exp Bot; 2020 Sep; 71(18):5705-5715. PubMed ID: 32542348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration.
    Cao ZZ; Qin ML; Lin XY; Zhu ZW; Chen MX
    Environ Pollut; 2018 Jul; 238():76-84. PubMed ID: 29547864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice.
    Sasaki A; Yamaji N; Ma JF
    J Exp Bot; 2014 Nov; 65(20):6013-21. PubMed ID: 25151617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield.
    Tang L; Mao B; Li Y; Lv Q; Zhang L; Chen C; He H; Wang W; Zeng X; Shao Y; Pan Y; Hu Y; Peng Y; Fu X; Li H; Xia S; Zhao B
    Sci Rep; 2017 Oct; 7(1):14438. PubMed ID: 29089547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter.
    Shao JF; Xia J; Yamaji N; Shen RF; Ma JF
    J Exp Bot; 2018 Apr; 69(10):2743-2752. PubMed ID: 29562302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Producing Cd-safe rice grains in moderately and seriously Cd-contaminated paddy soils.
    Chen HP; Wang P; Chang JD; Kopittke PM; Zhao FJ
    Chemosphere; 2021 Mar; 267():128893. PubMed ID: 33176911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan.
    Ueno D; Koyama E; Yamaji N; Ma JF
    J Exp Bot; 2011 Apr; 62(7):2265-72. PubMed ID: 21127026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cd uptake and accumulation in grains by hybrid rice in two paddy soils: interactive effect of soil type and cultivars].
    Gong WQ; Li LQ; Pan GX
    Huan Jing Ke Xue; 2006 Aug; 27(8):1647-53. PubMed ID: 17111628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic engineering low-arsenic and low-cadmium rice grain.
    Gui Y; Teo J; Tian D; Yin Z
    J Exp Bot; 2024 Mar; 75(7):2143-2155. PubMed ID: 38085003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3.
    Sun C; Yang M; Li Y; Tian J; Zhang Y; Liang L; Liu Z; Chen K; Li Y; Lv K; Lian X
    J Exp Bot; 2019 Nov; 70(21):6389-6400. PubMed ID: 31494666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq.
    Cao ZZ; Lin XY; Yang YJ; Guan MY; Xu P; Chen MX
    BMC Plant Biol; 2019 Jun; 19(1):250. PubMed ID: 31185911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice--A field study over four rice seasons in Hunan, China.
    Chen D; Guo H; Li R; Li L; Pan G; Chang A; Joseph S
    Sci Total Environ; 2016 Jan; 541():1489-1498. PubMed ID: 26490528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validating a segment on chromosome 7 of japonica for establishing low-cadmium accumulating indica rice variety.
    Wang K; Yan TZ; Xu SL; Yan X; Zhou QF; Zhao XH; Li YF; Wu ZX; Qin P; Fu CJ; Fu J; Zhou YB; Yang YZ
    Sci Rep; 2021 Mar; 11(1):6053. PubMed ID: 33723281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium contamination in agricultural soils of China and the impact on food safety.
    Wang P; Chen H; Kopittke PM; Zhao FJ
    Environ Pollut; 2019 Jun; 249():1038-1048. PubMed ID: 31146310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.