These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
522 related articles for article (PubMed ID: 30856455)
21. Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning. Kugelman J; Alonso-Caneiro D; Chen Y; Arunachalam S; Huang D; Vallis N; Collins MJ; Chen FK Transl Vis Sci Technol; 2020 Oct; 9(11):12. PubMed ID: 33133774 [TBL] [Abstract][Full Text] [Related]
22. Multiscale dual attention mechanism for fluid segmentation of optical coherence tomography images. Chen M; Ma W; Shi L; Li M; Wang C; Zheng G Appl Opt; 2021 Aug; 60(23):6761-6768. PubMed ID: 34613154 [TBL] [Abstract][Full Text] [Related]
23. HTC-retina: A hybrid retinal diseases classification model using transformer-Convolutional Neural Network from optical coherence tomography images. Laouarem A; Kara-Mohamed C; Bourennane EB; Hamdi-Cherif A Comput Biol Med; 2024 Aug; 178():108726. PubMed ID: 38878400 [TBL] [Abstract][Full Text] [Related]
24. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks. Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802 [TBL] [Abstract][Full Text] [Related]
25. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485 [TBL] [Abstract][Full Text] [Related]
26. Multiclass retinal disease classification and lesion segmentation in OCT B-scan images using cascaded convolutional networks. Zhong P; Wang J; Guo Y; Fu X; Wang R Appl Opt; 2020 Nov; 59(33):10312-10320. PubMed ID: 33361962 [TBL] [Abstract][Full Text] [Related]
27. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
28. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547 [TBL] [Abstract][Full Text] [Related]
29. Fully Automated Segmentation of Fluid/Cyst Regions in Optical Coherence Tomography Images With Diabetic Macular Edema Using Neutrosophic Sets and Graph Algorithms. Rashno A; Koozekanani DD; Drayna PM; Nazari B; Sadri S; Rabbani H; Parhi KK IEEE Trans Biomed Eng; 2018 May; 65(5):989-1001. PubMed ID: 28783619 [TBL] [Abstract][Full Text] [Related]
30. Deep structure tensor graph search framework for automated extraction and characterization of retinal layers and fluid pathology in retinal SD-OCT scans. Hassan T; Akram MU; Masood MF; Yasin U Comput Biol Med; 2019 Feb; 105():112-124. PubMed ID: 30616039 [TBL] [Abstract][Full Text] [Related]
31. Deep learning-based classification and segmentation of retinal cavitations on optical coherence tomography images of macular telangiectasia type 2. Loo J; Cai CX; Choong J; Chew EY; Friedlander M; Jaffe GJ; Farsiu S Br J Ophthalmol; 2022 Mar; 106(3):396-402. PubMed ID: 33229343 [TBL] [Abstract][Full Text] [Related]
32. A deep learning approach for pose estimation from volumetric OCT data. Gessert N; Schlüter M; Schlaefer A Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582 [TBL] [Abstract][Full Text] [Related]
33. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958 [TBL] [Abstract][Full Text] [Related]
34. AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Alqudah AM Med Biol Eng Comput; 2020 Jan; 58(1):41-53. PubMed ID: 31728935 [TBL] [Abstract][Full Text] [Related]
35. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification. Fang L; Wang C; Li S; Rabbani H; Chen X; Liu Z IEEE Trans Med Imaging; 2019 Aug; 38(8):1959-1970. PubMed ID: 30763240 [TBL] [Abstract][Full Text] [Related]
36. LOCTseg: A lightweight fully convolutional network for end-to-end optical coherence tomography segmentation. Parra-Mora E; da Silva Cruz LA Comput Biol Med; 2022 Nov; 150():106174. PubMed ID: 36252364 [TBL] [Abstract][Full Text] [Related]
37. Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans. Moradi M; Chen Y; Du X; Seddon JM Comput Biol Med; 2023 Mar; 154():106512. PubMed ID: 36701964 [TBL] [Abstract][Full Text] [Related]
38. Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction. Cheng J; Tao D; Quan Y; Wong DW; Cheung GC; Akiba M; Liu J IEEE Trans Med Imaging; 2016 Oct; 35(10):2270-2279. PubMed ID: 27116734 [TBL] [Abstract][Full Text] [Related]
39. Two-stage adversarial learning based unsupervised domain adaptation for retinal OCT segmentation. Diao S; Yin Z; Chen X; Li M; Zhu W; Mateen M; Xu X; Shi F; Fan Y Med Phys; 2024 Aug; 51(8):5374-5385. PubMed ID: 38426594 [TBL] [Abstract][Full Text] [Related]
40. DeSpecNet: a CNN-based method for speckle reduction in retinal optical coherence tomography images. Shi F; Cai N; Gu Y; Hu D; Ma Y; Chen Y; Chen X Phys Med Biol; 2019 Sep; 64(17):175010. PubMed ID: 31342925 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]