BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 30856498)

  • 1. Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem.
    Wang Y; Xiao X; Zhang K; Chen B
    Environ Pollut; 2019 May; 248():823-833. PubMed ID: 30856498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants.
    Wang Y; Zhang K; Lu L; Xiao X; Chen B
    Environ Pollut; 2020 Oct; 265(Pt B):114772. PubMed ID: 32454359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochar Impacts on Soil Silicon Dissolution Kinetics and their Interaction Mechanisms.
    Wang Y; Xiao X; Chen B
    Sci Rep; 2018 May; 8(1):8040. PubMed ID: 29795122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil.
    Yang X; Wen E; Ge C; El-Naggar A; Yu H; Wang S; Kwon EE; Song H; Shaheen SM; Wang H; Rinklebe J
    J Hazard Mater; 2023 Feb; 443(Pt B):130203. PubMed ID: 36327835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures.
    Xiao X; Chen B; Zhu L
    Environ Sci Technol; 2014 Mar; 48(6):3411-9. PubMed ID: 24601595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochar and ash derived from silicon-rich rice husk decrease inorganic arsenic species in rice grain.
    Leksungnoen P; Wisawapipat W; Ketrot D; Aramrak S; Nookabkaew S; Rangkadilok N; Satayavivad J
    Sci Total Environ; 2019 Sep; 684():360-370. PubMed ID: 31153082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars.
    Qian L; Chen B; Chen M
    Sci Rep; 2016 Jul; 6():29346. PubMed ID: 27385598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.).
    Jin W; Wang Z; Sun Y; Wang Y; Bi C; Zhou L; Zheng X
    Ecotoxicol Environ Saf; 2020 Feb; 189():109928. PubMed ID: 31767458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Si-enriched biochars improved soil properties, reduced Cd bioavailability while enhanced Cd translocation to grains of rice.
    Tan D; Mei C; Yang L; Chen J; Rasul F; Cai K
    Environ Sci Pollut Res Int; 2024 Feb; 31(8):12194-12206. PubMed ID: 38227260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils.
    Manolikaki II; Mangolis A; Diamadopoulos E
    J Environ Manage; 2016 Oct; 181():536-543. PubMed ID: 27429359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.
    Wu M; Feng Q; Sun X; Wang H; Gielen G; Wu W
    Sci Rep; 2015 May; 5():10001. PubMed ID: 25944542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of iron-modified biochar with S-rich and Si-rich feedstocks on Cd immobilization in the soil-rice system.
    Sui F; Kang Y; Wu H; Li H; Wang J; Joseph S; Munroe P; Li L; Pan G
    Ecotoxicol Environ Saf; 2021 Dec; 225():112764. PubMed ID: 34544024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of crop residue biochars on silicon and nutrient cycles in croplands.
    Li Z; Song Z; Singh BP; Wang H
    Sci Total Environ; 2019 Apr; 659():673-680. PubMed ID: 31096397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations.
    Shi J; Fan X; Tsang DCW; Wang F; Shen Z; Hou D; Alessi DS
    Chemosphere; 2019 Nov; 235():825-831. PubMed ID: 31284130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.
    Jeong CY; Dodla SK; Wang JJ
    Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Rice (Oryza sativa L.) Responds to Elevated As under Different Si-Rich Soil Amendments.
    Teasley WA; Limmer MA; Seyfferth AL
    Environ Sci Technol; 2017 Sep; 51(18):10335-10343. PubMed ID: 28795805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting effects of rice husk pyrolysis temperature on silicon dissolution and retention of cadmium (Cd) and dimethylarsinic acid (DMA).
    Linam F; McCoach K; Limmer MA; Seyfferth AL
    Sci Total Environ; 2021 Apr; 765():144428. PubMed ID: 33412375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice.
    Seyfferth AL; Amaral D; Limmer MA; Guilherme LRG
    Environ Int; 2019 Jul; 128():301-309. PubMed ID: 31077999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An assessment of emergy, energy, and cost-benefits of grain production over 6 years following a biochar amendment in a rice paddy from China.
    Wang L; Li L; Cheng K; Ji C; Yue Q; Bian R; Pan G
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9683-9696. PubMed ID: 29368196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment--a field experiment in Hunan, China.
    Zheng R; Chen Z; Cai C; Tie B; Liu X; Reid BJ; Huang Q; Lei M; Sun G; Baltrėnaitė E
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):11097-108. PubMed ID: 25794575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.