These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 30856704)

  • 1. Cellulosic Nanomaterial Production Via Fermentation by
    Park MS; Jung YH; Oh SY; Kim MJ; Bang WY; Lim YW
    J Microbiol Biotechnol; 2019 Apr; 29(4):617-624. PubMed ID: 30856704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1.
    Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB
    Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valorization of fruit processing waste to produce high value-added bacterial nanocellulose by a novel strain Komagataeibacter xylinus IITR DKH20.
    Khan H; Saroha V; Raghuvanshi S; Bharti AK; Dutt D
    Carbohydr Polym; 2021 May; 260():117807. PubMed ID: 33712153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties.
    Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH
    J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose.
    Dubey S; Sharma RK; Agarwal P; Singh J; Sinha N; Singh RP
    Int J Biol Macromol; 2017 Mar; 96():52-60. PubMed ID: 27939511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose.
    Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH
    Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome sequences and description of novel exopolysaccharides producing species Komagataeibacter pomaceti sp. nov. and reclassification of Komagataeibacter kombuchae (Dutta and Gachhui 2007) Yamada et al., 2013 as a later heterotypic synonym of Komagataeibacter hansenii (Gosselé et al. 1983) Yamada et al., 2013.
    Škraban J; Cleenwerck I; Vandamme P; Fanedl L; Trček J
    Syst Appl Microbiol; 2018 Nov; 41(6):581-592. PubMed ID: 30177404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Komagataeibacter cocois sp. nov., a novel cellulose-producing strain isolated from coconut milk.
    Liu LX; Liu SX; Wang YM; Bi JC; Chen HM; Deng J; Zhang C; Hu QS; Li CF
    Int J Syst Evol Microbiol; 2018 Oct; 68(10):3125-3131. PubMed ID: 30132753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium.
    Molina-Ramírez C; Cañas-Gutiérrez A; Castro C; Zuluaga R; Gañán P
    Carbohydr Polym; 2020 Jul; 240():116341. PubMed ID: 32475595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes.
    Gopu G; Govindan S
    Prep Biochem Biotechnol; 2018; 48(9):842-852. PubMed ID: 30303756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of microbial cellulose by a bacterium isolated from fruit.
    Jahan F; Kumar V; Rawat G; Saxena RK
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1157-71. PubMed ID: 22391690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
    Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S
    Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium.
    Rodrigues AC; Fontão AI; Coelho A; Leal M; Soares da Silva FAG; Wan Y; Dourado F; Gama M
    N Biotechnol; 2019 Mar; 49():19-27. PubMed ID: 30529474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial nanocellulose: A versatile biopolymer production using a cost-effective wooden disc based rotary reactor.
    Jagtap A; Dastager SG
    Biopolymers; 2024 Jul; 115(4):e23577. PubMed ID: 38526043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice.
    Lin SP; Huang YH; Hsu KD; Lai YJ; Chen YK; Cheng KC
    Carbohydr Polym; 2016 Oct; 151():827-833. PubMed ID: 27474630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization and physicochemical characterization of bacterial cellulose by Komagataeibacter nataicola and Komagataeibacter maltaceti strains isolated from grape, thorn apple and apple vinegars.
    Greser AB; Avcioglu NH
    Arch Microbiol; 2022 Jul; 204(8):465. PubMed ID: 35802199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: Fermentation profiles and genome-wide analysis.
    Li ZY; Azi F; Ge ZW; Liu YF; Yin XT; Dong MS
    Int J Biol Macromol; 2021 Nov; 191():211-221. PubMed ID: 34547311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial nanocellulose production and application: a 10-year overview.
    Jozala AF; de Lencastre-Novaes LC; Lopes AM; de Carvalho Santos-Ebinuma V; Mazzola PG; Pessoa A; Grotto D; Gerenutti M; Chaud MV
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2063-72. PubMed ID: 26743657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12.
    Naloka K; Matsushita K; Theeragool G
    Int J Biol Macromol; 2020 May; 150():1113-1120. PubMed ID: 31739023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea.
    Li J; Chen G; Zhang R; Wu H; Zeng W; Liang Z
    Biotechnol Appl Biochem; 2019 Jan; 66(1):108-118. PubMed ID: 30359481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.