These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30856728)

  • 1. A Rapid Psychrometric Procedure for Water Activity Measurement of Foods in the Intermediate Moisture Range
    Wiebe HH; Kidambi RN; Richardson GH; Ernstrom CA
    J Food Prot; 1981 Dec; 44(12):892-895. PubMed ID: 30856728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring water potential (activity) from free water to oven dryness.
    Wiebe HH
    Plant Physiol; 1981 Dec; 68(6):1218-21. PubMed ID: 16662081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An accurate temperature correction model for thermocouple hygrometers.
    Savage MJ; Cass A; de Jager JM
    Plant Physiol; 1982 Feb; 69(2):526-30. PubMed ID: 16662241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Psychrometric Determination of Water Activity in the High a
    Prior BA; Casaleggio C; VAN Vuuren HJJ
    J Food Prot; 1977 Aug; 40(8):537-539. PubMed ID: 30731606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ field measurement of leaf water potential using thermocouple psychrometers.
    Savage MJ; Wiebe HH; Cass A
    Plant Physiol; 1983 Nov; 73(3):609-13. PubMed ID: 16663267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid leaf-disc sampler for psychrometric water potential measurements.
    Wullschleger SD; Oosterhuis DM
    Plant Physiol; 1986 Jun; 81(2):684-5. PubMed ID: 16664879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of precision estimates for fiber-dimensional and electrical hygrometers for water activity determinations.
    Stroup WH; Peeler JT; Smith K
    J Assoc Off Anal Chem; 1987; 70(6):955-7. PubMed ID: 3436906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of salt secretion on psychrometric determinations of water potential of cotton leaves.
    Klepper B; Barrs HD
    Plant Physiol; 1968 Jul; 43(7):1138-40. PubMed ID: 16656895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ratio of cut surface area to leaf sample volume for water potential measurements by thermocouple psychrometers.
    Walker S; Oosterhuis DM; Wiebe HH
    Plant Physiol; 1984 May; 75(1):228-30. PubMed ID: 16663578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Intermediate moisture foods and water activity determination].
    Multon JL; Bizot H
    Ann Nutr Aliment; 1978; 32(2-3):631-54. PubMed ID: 707937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures.
    Tadapaneni RK; Yang R; Carter B; Tang J
    Food Res Int; 2017 Dec; 102():203-212. PubMed ID: 29195941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for the production of low-fat Cheddar cheese.
    Amelia I; Drake M; Nelson B; Barbano DM
    J Dairy Sci; 2013 Aug; 96(8):4870-84. PubMed ID: 23726423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the heat inactivation of foodborne pathogens in milk powder: High relevance of the substrate water activity.
    Lang E; Chemlal L; Molin P; Guyot S; Alvarez-Martin P; Perrier-Cornet JM; Dantigny P; Gervais P
    Food Res Int; 2017 Sep; 99(Pt 1):577-585. PubMed ID: 28784519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction of thermal gradient errors in stem thermocouple hygrometers.
    Michel BE
    Plant Physiol; 1979 Jan; 63(1):221-4. PubMed ID: 16660685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of fat, protein, moisture, and salt content of Cheddar cheese using mid-infrared transmittance spectroscopy.
    Margolies BJ; Barbano DM
    J Dairy Sci; 2018 Feb; 101(2):924-933. PubMed ID: 29153514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valuation of milk composition and genotype in cheddar cheese production using an optimization model of cheese and whey production.
    Johnson HA; Parvin L; Garnett I; DePeters EJ; Medrano JF; Fadel JG
    J Dairy Sci; 2007 Feb; 90(2):616-29. PubMed ID: 17235137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival of Salmonella in Cookie and Cracker Sandwiches Containing Inoculated, Low-Water Activity Fillings.
    Beuchat LR; Mann DA
    J Food Prot; 2015 Oct; 78(10):1828-34. PubMed ID: 26408131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of water activity on the heat resistance of Salmonella enterica in selected low-moisture foods.
    Gautam B; Govindan BN; GÓ“nzle M; Roopesh MS
    Int J Food Microbiol; 2020 Dec; 334():108813. PubMed ID: 32841809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival Kinetics of Salmonella enterica and Enterohemorrhagic Escherichia coli on a Plastic Surface at Low Relative Humidity and on Low-Water Activity Foods.
    Hokunan H; Koyama K; Hasegawa M; Kawamura S; Koseki S
    J Food Prot; 2016 Oct; 79(10):1680-1692. PubMed ID: 28221855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during cocoa powder thermal processing.
    Tsai HC; Ballom KF; Xia S; Tang J; Marks BP; Zhu MJ
    Food Microbiol; 2019 Sep; 82():135-141. PubMed ID: 31027767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.