These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3085678)

  • 1. Effect of 6-hydroxydopamine on polymerization of tubulin. Protection by superoxide dismutase, catalase, or anaerobic conditions.
    Davison AJ; Legault NA; Steele DW
    Biochem Pharmacol; 1986 May; 35(9):1411-7. PubMed ID: 3085678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of iron from ferritin by 6-hydroxydopamine under aerobic and anaerobic conditions.
    Lode HN; Bruchelt G; Rieth AG; Niethammer D
    Free Radic Res Commun; 1990; 11(1-3):153-8. PubMed ID: 2127409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of superoxide dismutase and catalase on catalysis of 6-hydroxydopamine and 6-aminodopamine autoxidation by iron and ascorbate.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1981 Aug; 30(16):2279-85. PubMed ID: 6794574
    [No Abstract]   [Full Text] [Related]  

  • 4. Deterioration of axonal membranes induced by phenolic pro-oxidants. Roles of superoxide radicals and hydrogen peroxide.
    Davison AJ; Wilson BD; Belton P
    Biochem Pharmacol; 1984 Dec; 33(23):3887-91. PubMed ID: 6095863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation.
    Monteiro HP; Winterbourn CC
    Biochem Pharmacol; 1989 Dec; 38(23):4177-82. PubMed ID: 2512934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional effects of 6-hydroxydopamine (6-OHDA) on free radical scavengers in rat brain.
    Perumal AS; Tordzro WK; Katz M; Jackson-Lewis V; Cooper TB; Fahn S; Cadet JL
    Brain Res; 1989 Dec; 504(1):139-41. PubMed ID: 2513085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytotoxic aspects of the interaction of ascorbic acid with alloxan and 6-hydroxydopamine.
    Heikkila RE; Cohen G
    Ann N Y Acad Sci; 1975 Sep; 258():221-30. PubMed ID: 1060403
    [No Abstract]   [Full Text] [Related]  

  • 8. The role of reactive oxygen compounds derived from 6-hydroxydopamine for bone marrow purging from neuroblastoma cells.
    Bruchelt G; Buck J; Girgert R; Treuner J; Niethammer D
    Biochem Biophys Res Commun; 1985 Jul; 130(1):168-74. PubMed ID: 2992460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between metals, ligands, and oxygen in the autoxidation of 6-hydroxydopamine: mechanisms by which metal chelation enhances inhibition by superoxide dismutase.
    Bandy B; Davison AJ
    Arch Biochem Biophys; 1987 Dec; 259(2):305-15. PubMed ID: 3122661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of active oxygen species in 6-hydroxydopamine toxicity to a human neuroblastoma cell line.
    Tiffany-Castiglioni E; Saneto RP; Proctor PH; Perez-Polo JR
    Biochem Pharmacol; 1982 Jan; 31(2):181-8. PubMed ID: 7059360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro.
    Mazzio EA; Reams RR; Soliman KF
    Brain Res; 2004 Apr; 1004(1-2):29-44. PubMed ID: 15033417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydantoin drugs inhibit polymerization of pure microtubular protein.
    MacKinney AA; Vyas RS; Walker D
    J Pharmacol Exp Ther; 1978 Jan; 204(1):189-94. PubMed ID: 619129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase. Effects of formate, superoxide dismutase, catalase, and dithiothreitol.
    Durchschlag H; Zipper P
    Radiat Environ Biophys; 1985; 24(2):99-111. PubMed ID: 4011852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of propagators and inhibitors on the ultraweak luminescence from maize roots.
    Radotić K; Redenović C; Jeremić M; Vucinić Z
    J Biolumin Chemilumin; 1990; 5(4):221-5. PubMed ID: 2174639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper increases the ability of 6-hydroxydopamine to generate oxidative stress and the ability of ascorbate and glutathione to potentiate this effect: potential implications in Parkinson's disease.
    Cruces-Sande A; Méndez-Álvarez E; Soto-Otero R
    J Neurochem; 2017 Jun; 141(5):738-749. PubMed ID: 28294337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of purified phenylalanine hydroxylase by dithiothreitol.
    Martínez A; Olafsdottir S; Haavik J; Flatmark T
    Biochem Biophys Res Commun; 1992 Jan; 182(1):92-8. PubMed ID: 1731804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweir JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoperoxidation in lens and cataract formation: preventive role of superoxide dismutase, catalase and vitamin C.
    Varma SD; Srivastava VK; Richards RD
    Ophthalmic Res; 1982; 14(3):167-75. PubMed ID: 7099536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 6-Hydroxydopamine toxicity to dopamine neurons in culture: potentiation by the addition of superoxide dismutase and N-acetylcysteine.
    Mytilineou C; Danias P
    Biochem Pharmacol; 1989 Jun; 38(11):1872-5. PubMed ID: 2735944
    [No Abstract]   [Full Text] [Related]  

  • 20. 6-hydroxydopamine does not reduce molecular oxygen directly, but requires a coreductant.
    Gee P; Davison AJ
    Arch Biochem Biophys; 1984 May; 231(1):164-8. PubMed ID: 6426392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.