These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 30856950)

  • 1. Incidence of Ear Rot Pathogens Under Alternating Corn Tillage Practices.
    Flett BC; McLaren NW; Wehner FC
    Plant Dis; 1998 Jul; 82(7):781-784. PubMed ID: 30856950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incidence of Stenocarpella maydis Ear Rot of Corn Under Crop Rotation Systems.
    Flett BC; McLaren NW; Wehner FC
    Plant Dis; 2001 Jan; 85(1):92-94. PubMed ID: 30832079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia.
    Mukanga M; Derera J; Tongoona P; Laing MD
    Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Previous Crop Residues and Tillage on Fusarium Head Blight of Wheat.
    Dill-Macky R; Jones RK
    Plant Dis; 2000 Jan; 84(1):71-76. PubMed ID: 30841225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusarium temperatum as a New Species Causing Ear Rot on Maize in Poland.
    Czembor E; Stępień Ł; Waśkiewicz A
    Plant Dis; 2014 Jul; 98(7):1001. PubMed ID: 30708873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis.
    Zaccaron AZ; Woloshuk CP; Bluhm BH
    Fungal Biol; 2017 Nov; 121(11):966-983. PubMed ID: 29029703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First Report of Fusarium temperatum Causing Fusarium Ear Rot on Maize in Northern China.
    Zhang H; Luo W; Pan Y; Xu J; Xu JS; Chen WQ; Feng J
    Plant Dis; 2014 Sep; 98(9):1273. PubMed ID: 30699668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence of Pod Rot Pathogens in Peanuts Grown in North Carolina.
    Hollowell JE; Shew BB; Beute MK; Abad ZG
    Plant Dis; 1998 Dec; 82(12):1345-1349. PubMed ID: 30845467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance.
    Munkvold GP; Hellmich RL; Showers WB
    Phytopathology; 1997 Oct; 87(10):1071-7. PubMed ID: 18945043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inoculum Potential of Fusarium spp. Relates to Tillage and Straw Management in Norwegian Fields of Spring Oats.
    Hofgaard IS; Seehusen T; Aamot HU; Riley H; Razzaghian J; Le VH; Hjelkrem AG; Dill-Macky R; Brodal G
    Front Microbiol; 2016; 7():556. PubMed ID: 27148236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tillage Effects on Macrophomina phaseolina Population Density and Soybean Yield.
    Wrather JA; Kendig SR; Tyler DD
    Plant Dis; 1998 Feb; 82(2):247-250. PubMed ID: 30856810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Environmental Conditions and Agronomic Practices on the Prevalence of
    Pfordt A; Ramos Romero L; Schiwek S; Karlovsky P; von Tiedemann A
    Pathogens; 2020 Mar; 9(3):. PubMed ID: 32245280
    [No Abstract]   [Full Text] [Related]  

  • 13. Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois.
    Rogers KD; Cannistra JC; Gloer JB; Wicklow DT
    Mycotoxin Res; 2014 May; 30(2):61-70. PubMed ID: 24504633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth Distribution of Rotylenchulus reniformis Under Different Tillage and Crop Sequence Systems.
    Westphal A; Smart JR
    Phytopathology; 2003 Sep; 93(9):1182-9. PubMed ID: 18944104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum.
    Ali ML; Taylor JH; Jie L; Sun G; William M; Kasha KJ; Reid LM; Pauls KP
    Genome; 2005 Jun; 48(3):521-33. PubMed ID: 16121248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Molecular Assays for Detection of Stenocarpella maydis and Stenocarpella macrospora in Corn.
    Romero MP; Wise KA
    Plant Dis; 2015 Jun; 99(6):761-769. PubMed ID: 30699541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Tillage Practices on Anthracnose Development and Distribution in Dry Bean Fields.
    Ntahimpera N; Dillard HR; Cobb AC; Seem RC
    Plant Dis; 1997 Jan; 81(1):71-76. PubMed ID: 30870951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Seed and Soil Treatments with Novel Bacillus subtilis Strains for Control of Soybean Root Rot Caused by Fusarium oxysporum and F. graminearum.
    Zhang JX; Xue AG; Tambong JT
    Plant Dis; 2009 Dec; 93(12):1317-1323. PubMed ID: 30759515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize.
    Wicklow DT; Rogers KD; Dowd PF; Gloer JB
    Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors that affect the occurrence of fumonisin.
    Miller JD
    Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):321-4. PubMed ID: 11359702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.