These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 30857102)
1. Bioremediation of triphenyl phosphate by Brevibacillus brevis: Degradation characteristics and role of cytochrome P450 monooxygenase. Wei K; Yin H; Peng H; Lu G; Dang Z Sci Total Environ; 2018 Jun; 627():1389-1395. PubMed ID: 30857102 [TBL] [Abstract][Full Text] [Related]
2. Bioremediation of triphenyl phosphate in river water microcosms: Proteome alteration of Brevibacillus brevis and cytotoxicity assessments. Wei K; Yin H; Peng H; Lu G; Dang Z Sci Total Environ; 2019 Feb; 649():563-570. PubMed ID: 30176467 [TBL] [Abstract][Full Text] [Related]
3. Biodegradation of triphenyl phosphate using an efficient bacterial consortium GYY: Degradation characteristics, metabolic pathway and 16S rRNA genes analysis. Yang Y; Yin H; Peng H; Lu G; Dang Z Sci Total Environ; 2020 Apr; 713():136598. PubMed ID: 31955097 [TBL] [Abstract][Full Text] [Related]
4. Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis: Degradation pathway and metabolic mechanism. Liu Y; Yin H; Wei K; Peng H; Lu G; Dang Z Chemosphere; 2019 Oct; 232():195-203. PubMed ID: 31154180 [TBL] [Abstract][Full Text] [Related]
5. Tea saponin enhanced biodegradation of decabromodiphenyl ether by Brevibacillus brevis. Tang S; Bai J; Yin H; Ye J; Peng H; Liu Z; Dang Z Chemosphere; 2014 Nov; 114():255-61. PubMed ID: 25113210 [TBL] [Abstract][Full Text] [Related]
6. Bioremediation of triphenyl phosphate by Pycnoporus sanguineus: Metabolic pathway, proteomic mechanism and biotoxicity assessment. Feng M; Zhou J; Yu X; Wang H; Guo Y; Mao W J Hazard Mater; 2021 Sep; 417():125983. PubMed ID: 33975170 [TBL] [Abstract][Full Text] [Related]
7. Enhanced degradation of triphenyl phosphate (TPHP) in bioelectrochemical systems: Kinetics, pathway and degradation mechanisms. Hou R; Luo X; Liu C; Zhou L; Wen J; Yuan Y Environ Pollut; 2019 Nov; 254(Pt A):113040. PubMed ID: 31421579 [TBL] [Abstract][Full Text] [Related]
8. Triphenyltin biodegradation and intracellular material release by Brevibacillus brevis. Ye J; Zhao H; Yin H; Peng H; Tang L; Gao J; Ma Y Chemosphere; 2014 Jun; 105():62-7. PubMed ID: 24388446 [TBL] [Abstract][Full Text] [Related]
9. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes. Su G; Crump D; Letcher RJ; Kennedy SW Environ Sci Technol; 2014 Nov; 48(22):13511-9. PubMed ID: 25350880 [TBL] [Abstract][Full Text] [Related]
10. Uptake and toxic effects of triphenyl phosphate on freshwater microalgae Chlorella vulgaris and Scenedesmus obliquus: Insights from untargeted metabolomics. Wang L; Huang X; Lim DJ; Laserna AKC; Li SFY Sci Total Environ; 2019 Feb; 650(Pt 1):1239-1249. PubMed ID: 30308812 [TBL] [Abstract][Full Text] [Related]
11. Metagenomic insights into the mechanisms of triphenyl phosphate degradation by bioaugmentation with Sphingopyxis sp. GY. Yu Y; Huang W; Yu W; Tang S; Yin H Ecotoxicol Environ Saf; 2023 Sep; 263():115261. PubMed ID: 37459723 [TBL] [Abstract][Full Text] [Related]
12. Insights into biodegradation mechanisms of triphenyl phosphate by a novel fungal isolate and its potential in bioremediation of contaminated river sediment. Feng M; Zhou J; Yu X; Mao W; Guo Y; Wang H J Hazard Mater; 2022 Feb; 424(Pt B):127545. PubMed ID: 34879531 [TBL] [Abstract][Full Text] [Related]
13. Metabolic Mechanism of Aryl Phosphorus Flame Retardants by Cytochromes P450: A Combined Experimental and Computational Study on Triphenyl Phosphate. Zhang Q; Ji S; Chai L; Yang F; Zhao M; Liu W; Schüürmann G; Ji L Environ Sci Technol; 2018 Dec; 52(24):14411-14421. PubMed ID: 30421920 [TBL] [Abstract][Full Text] [Related]
14. Uptake, Deposition, and Metabolism of Triphenyl Phosphate in Embryonated Eggs and Chicks of Japanese Quail (Coturnix japonica). Marteinson S; Guigueno MF; Fernie KJ; Head JA; Chu S; Letcher RJ Environ Toxicol Chem; 2020 Mar; 39(3):565-573. PubMed ID: 31756765 [TBL] [Abstract][Full Text] [Related]
15. Determination of glucuronide conjugates of hydroxyl triphenyl phosphate (OH-TPHP) metabolites in human urine and its use as a biomarker of TPHP exposure. Su G; Letcher RJ; Yu H; Gooden DM; Stapleton HM Chemosphere; 2016 Apr; 149():314-9. PubMed ID: 26874059 [TBL] [Abstract][Full Text] [Related]
16. Biosorption and biodegradation of triphenyltin by Brevibacillus brevis. Ye J; Yin H; Peng H; Bai J; Xie D; Wang L Bioresour Technol; 2013 Feb; 129():236-41. PubMed ID: 23247152 [TBL] [Abstract][Full Text] [Related]
18. Species-specific metabolism of triphenyl phosphate and its mono-hydroxylated product by human and rat CYP2E1 and the carp ortholog. Hu KQ; Luo XJ; Zeng YH; Liu Y; Mai BX Ecotoxicol Environ Saf; 2024 Sep; 283():116748. PubMed ID: 39059342 [TBL] [Abstract][Full Text] [Related]
19. Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay. Greaves AK; Su G; Letcher RJ Toxicol Appl Pharmacol; 2016 Oct; 308():59-65. PubMed ID: 27523639 [TBL] [Abstract][Full Text] [Related]
20. Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge. Jurgens SS; Helmus R; Waaijers SL; Uittenbogaard D; Dunnebier D; Vleugel M; Kraak MH; de Voogt P; Parsons JR Chemosphere; 2014 Sep; 111():238-42. PubMed ID: 24997924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]