These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30857187)

  • 1. Designing Supramolecular Gelators: Challenges, Frustrations, and Hopes.
    Dastidar P
    Gels; 2019 Mar; 5(1):. PubMed ID: 30857187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular synthons in noncovalent synthesis of a class of gelators derived from simple organic salts: instant gelation of organic fluids at room temperature via in situ synthesis of the gelators.
    Das UK; Trivedi DR; Adarsh NN; Dastidar P
    J Org Chem; 2009 Sep; 74(18):7111-21. PubMed ID: 19678626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting supramolecular synthons in designing gelators derived from multiple drugs.
    Roy R; Deb J; Jana SS; Dastidar P
    Chemistry; 2014 Nov; 20(47):15320-4. PubMed ID: 25319197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Gels by Design: Towards the Development of Topical Gels for Self-Delivery Application.
    Parveen R; Dastidar P
    Chemistry; 2016 Jun; 22(27):9257-66. PubMed ID: 27226393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary ammonium monocarboxylate synthon in designing supramolecular gels: a new series of chiral low-molecular-weight gelators derived from simple organic salts that are capable of generating and stabilizing gold nanoparticles.
    Das UK; Banerjee S; Dastidar P
    Chem Asian J; 2013 Dec; 8(12):3022-31. PubMed ID: 24019291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular synthons in designing low molecular mass gelling agents: L-amino acid methyl ester cinnamate salts and their anti-solvent-induced instant gelation.
    Sahoo P; Kumar DK; Raghavan SR; Dastidar P
    Chem Asian J; 2011 Apr; 6(4):1038-47. PubMed ID: 20967821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular gelling agents: can they be designed?
    Dastidar P
    Chem Soc Rev; 2008 Dec; 37(12):2699-715. PubMed ID: 19020683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing a simple organic salt-based supramolecular topical gel capable of displaying in vivo self-delivery application.
    Majumder J; Deb J; Das MR; Jana SS; Dastidar P
    Chem Commun (Camb); 2014 Feb; 50(14):1671-4. PubMed ID: 24390074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular Gels Derived from the Salts of Variously Substituted Phenylacetic Acid and Dicyclohexylamine: Design, Synthesis, Structures, and Dye Adsorption.
    Roy R; Adalder TK; Dastidar P
    Chem Asian J; 2018 Mar; 13(5):552-559. PubMed ID: 29345067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial library of primaryalkylammonium dicarboxylate gelators: a supramolecular synthon approach.
    Sahoo P; Adarsh NN; Chacko GE; Raghavan SR; Puranik VG; Dastidar P
    Langmuir; 2009 Aug; 25(15):8742-50. PubMed ID: 19301875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular Assembly of Peptide and Metallopeptide Gelators and Their Stimuli-Responsive Properties in Biomedical Applications.
    Falcone N; Kraatz HB
    Chemistry; 2018 Sep; 24(54):14316-14328. PubMed ID: 29667727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry.
    Qi Z; Schalley CA
    Acc Chem Res; 2014 Jul; 47(7):2222-33. PubMed ID: 24937365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular Synthon Approach in Developing Anti-Inflammatory Topical Gels for In Vivo Self-Delivery.
    Roy R; Dastidar P
    Chemistry; 2017 Nov; 23(62):15623-15627. PubMed ID: 28895213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Orthogonal Hydrogen Bonding towards Designing Organic-Salt-Based Supramolecular Gelators: Synthesis, Structures, and Anticancer Properties.
    Chakraborty P; Dastidar P
    Chem Asian J; 2018 May; 13(10):1366-1378. PubMed ID: 29578316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4,6-
    Sharma P; Wang G
    Gels; 2022 Mar; 8(3):. PubMed ID: 35323304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidrug-Containing, Salt-Based, Injectable Supramolecular Gels for Self-Delivery, Cell Imaging and Other Materials Applications.
    Roy R; Dastidar P
    Chemistry; 2016 Oct; 22(42):14929-14939. PubMed ID: 27578557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel sculpture: moldable, load-bearing and self-healing non-polymeric supramolecular gel derived from a simple organic salt.
    Sahoo P; Sankolli R; Lee HY; Raghavan SR; Dastidar P
    Chemistry; 2012 Jun; 18(26):8057-63. PubMed ID: 22628195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recently Developed Carbohydrate Based Gelators and Their Applications.
    Morris J; Bietsch J; Bashaw K; Wang G
    Gels; 2021 Feb; 7(1):. PubMed ID: 33652820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile supramolecular gelators that can harden water, organic solvents and ionic liquids.
    Minakuchi N; Hoe K; Yamaki D; Ten-no S; Nakashima K; Goto M; Mizuhata M; Maruyama T
    Langmuir; 2012 Jun; 28(25):9259-66. PubMed ID: 22650420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.
    Divya KP; Miroshnikov M; Dutta D; Vemula PK; Ajayan PM; John G
    Acc Chem Res; 2016 Sep; 49(9):1671-80. PubMed ID: 27552443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.