BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30857269)

  • 1. Calculation Method for Phenotypic Traits Based on the 3D Reconstruction of Maize Canopies.
    Ma X; Zhu K; Guan H; Feng J; Yu S; Liu G
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Branch-Leaf Segmentation and Leaf Phenotypic Parameter Estimation of Pear Trees Based on Three-Dimensional Point Clouds.
    Li H; Wu G; Tao S; Yin H; Qi K; Zhang S; Guo W; Ninomiya S; Mu Y
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions.
    Friedli M; Kirchgessner N; Grieder C; Liebisch F; Mannale M; Walter A
    Plant Methods; 2016; 12():9. PubMed ID: 26834822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season.
    Zhu B; Liu F; Xie Z; Guo Y; Li B; Ma Y
    Ann Bot; 2020 Sep; 126(4):701-712. PubMed ID: 32179920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional reconstruction and phenotype measurement of maize seedlings based on multi-view image sequences.
    Li Y; Liu J; Zhang B; Wang Y; Yao J; Zhang X; Fan B; Li X; Hai Y; Fan X
    Front Plant Sci; 2022; 13():974339. PubMed ID: 36119622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel LiDAR-Based Instrument for High-Throughput, 3D Measurement of Morphological Traits in Maize and Sorghum.
    Thapa S; Zhu F; Walia H; Yu H; Ge Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29652788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
    Jiang Y; Li C; Paterson AH; Sun S; Xu R; Robertson J
    Front Plant Sci; 2017; 8():2233. PubMed ID: 29441074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canopy occupation volume as an indicator of canopy photosynthetic capacity.
    Liu F; Song Q; Zhao J; Mao L; Bu H; Hu Y; Zhu XG
    New Phytol; 2021 Oct; 232(2):941-956. PubMed ID: 34245568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography.
    Che Y; Wang Q; Xie Z; Zhou L; Li S; Hui F; Wang X; Li B; Ma Y
    Ann Bot; 2020 Sep; 126(4):765-773. PubMed ID: 32432702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Accurate Skeleton Extraction Approach From 3D Point Clouds of Maize Plants.
    Wu S; Wen W; Xiao B; Guo X; Du J; Wang C; Wang Y
    Front Plant Sci; 2019; 10():248. PubMed ID: 30899271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Canopy fingerprints" for characterizing three-dimensional point cloud data of soybean canopies.
    Young TJ; Jubery TZ; Carley CN; Carroll M; Sarkar S; Singh AK; Singh A; Ganapathysubramanian B
    Front Plant Sci; 2023; 14():1141153. PubMed ID: 37063230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Modeling of Maize Canopies Based on Computational Intelligence.
    Wu Y; Wen W; Gu S; Huang G; Wang C; Lu X; Xiao P; Guo X; Huang L
    Plant Phenomics; 2024; 6():0160. PubMed ID: 38510827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the vertical distribution of leaf area enhanced light interception efficiency in maize over generations of selection.
    Perez RPA; Fournier C; Cabrera-Bosquet L; Artzet S; Pradal C; Brichet N; Chen TW; Chapuis R; Welcker C; Tardieu F
    Plant Cell Environ; 2019 Jul; 42(7):2105-2119. PubMed ID: 30801738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of soybean plant trait parameters based on SfM-MVS algorithm combined with GRNN.
    He W; Ye Z; Li M; Yan Y; Lu W; Xing G
    Front Plant Sci; 2023; 14():1181322. PubMed ID: 37560031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic detection of three-dimensional crop phenotypes based on a consumer-grade RGB-D camera.
    Song P; Li Z; Yang M; Shao Y; Pu Z; Yang W; Zhai R
    Front Plant Sci; 2023; 14():1097725. PubMed ID: 36778701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pheno4D: A spatio-temporal dataset of maize and tomato plant point clouds for phenotyping and advanced plant analysis.
    Schunck D; Magistri F; Rosu RA; Cornelißen A; Chebrolu N; Paulus S; Léon J; Behnke S; Stachniss C; Kuhlmann H; Klingbeil L
    PLoS One; 2021; 16(8):e0256340. PubMed ID: 34407122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating a three dimensional model of diffuse photosynthetically active radiation in maize canopies.
    Wang X; Guo Y; Li B; Wang X; Ma Y
    Int J Biometeorol; 2006 Jul; 50(6):349-57. PubMed ID: 16683118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point cloud registration method for maize plants based on conical surface fitting-ICP.
    Zhang K; Chen H; Wu H; Zhao X; Zhou C
    Sci Rep; 2022 Apr; 12(1):6852. PubMed ID: 35478217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Measurement of Morphological Traits of Typical Leaf Samples.
    Huang X; Zheng S; Gui L
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33807117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.