BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30857631)

  • 21. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum.
    Chacón-Orozco JG; Bueno CJ; Shapiro-Ilan DI; Hazir S; Leite LG; Harakava R
    Sci Rep; 2020 Nov; 10(1):20649. PubMed ID: 33244079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficacy and toxic action of the natural product natamycin against Sclerotinia sclerotiorum.
    Cao Y; Zhang X; Song X; Li W; Ren Z; Feng J; Ma Z; Liu X; Wang Y
    Pest Manag Sci; 2024 Apr; 80(4):1981-1990. PubMed ID: 38087429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum.
    Yang F; Abdelnabby H; Xiao Y
    Microb Pathog; 2015 Dec; 89():169-76. PubMed ID: 26521137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing the Fungicide Sensitivity of
    da Silva Lehner M; Alves KS; Del Ponte EM; Pethybridge SJ
    Plant Dis; 2022 Feb; 106(2):360-363. PubMed ID: 34524868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluxapyroxad Resistance Mechanisms in
    Wang Y; Lu N; Wang K; Li Y; Zhang M; Liu S; Li Y; Zhou F
    Plant Dis; 2023 Apr; 107(4):1035-1043. PubMed ID: 36058635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Volatile Compounds of Endophytic Bacillus spp. have Biocontrol Activity Against Sclerotinia sclerotiorum.
    Massawe VC; Hanif A; Farzand A; Mburu DK; Ochola SO; Wu L; Tahir HAS; Gu Q; Wu H; Gao X
    Phytopathology; 2018 Dec; 108(12):1373-1385. PubMed ID: 29927356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hormetic Effects of Flusilazole Preconditioning on Mycelial Growth and Virulence of Sclerotinia sclerotiorum.
    Lu X; He S; Ma H; Li J; Zhu F
    Plant Dis; 2018 Jun; 102(6):1165-1170. PubMed ID: 30673443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the Potential Mechanism of Pydiflumetofen Resistance in
    Zhou F; Cui YX; Ma YH; Wang JY; Hu HY; Li SW; Zhang FL; Li CW
    Plant Dis; 2021 Nov; 105(11):3580-3585. PubMed ID: 33934629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium.
    Cheng Q; Jia W; Hu C; Shi G; Yang D; Cai M; Zhan T; Tang Y; Zhou Y; Sun X; Zhao X
    Environ Pollut; 2020 Oct; 265(Pt A):114827. PubMed ID: 32454382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating the Sensitivity and Efficacy of Fungicides with Different Modes of Action Against Botryosphaeria dothidea.
    Song Y; Li L; Li C; Lu Z; Men X; Chen F
    Plant Dis; 2018 Sep; 102(9):1785-1793. PubMed ID: 30125189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity and cell toxicology of fluazinam on Fusarium graminearum.
    Wu L; Wu Z; Zhao F; Hahn M; Zhou M; Hou Y
    Pestic Biochem Physiol; 2022 Nov; 188():105253. PubMed ID: 36464359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pharmacological Characteristics and Efficacy of Fluazinam Against
    Li T; Xiu Q; Zhang J; Wang JX; Duan YB; Zhou MG
    Plant Dis; 2020 Sep; 104(9):2449-2454. PubMed ID: 32579058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Action of selenium against Sclerotinia sclerotiorum: Damaging membrane system and interfering with metabolism.
    Jia W; Hu C; Ming J; Zhao Y; Xin J; Sun X; Zhao X
    Pestic Biochem Physiol; 2018 Sep; 150():10-16. PubMed ID: 30195382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antifungal Activity and Mechanism of Xenocoumacin 1, a Natural Product from
    Zhang S; Han Y; Wang L; Han J; Yan Z; Wang Y; Wang Y
    J Fungi (Basel); 2024 Feb; 10(3):. PubMed ID: 38535184
    [No Abstract]   [Full Text] [Related]  

  • 35. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean.
    Zhang F; Ge H; Zhang F; Guo N; Wang Y; Chen L; Ji X; Li C
    Plant Physiol Biochem; 2016 Mar; 100():64-74. PubMed ID: 26774866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple Species of Asteraceae Plants Are Susceptible to Root Infection by the Necrotrophic Fungal Pathogen
    Underwood W; Gilley M; Misar CG; Gulya TJ; Seiler GJ; Markell SG
    Plant Dis; 2022 May; 106(5):1366-1373. PubMed ID: 34874175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The relationship between features enabling SDHI fungicide binding to the Sc-Sdh complex and its inhibitory activity against Sclerotinia sclerotiorum.
    Gao Y; He L; Zhu J; Cheng J; Li B; Liu F; Mu W
    Pest Manag Sci; 2020 Aug; 76(8):2799-2808. PubMed ID: 32216079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum.
    Ziaei M; Motallebi M; Zamani MR; Panjeh NZ
    Biotechnol Lett; 2016 Jun; 38(6):1021-32. PubMed ID: 26875090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring mechanisms of resistance to dimethachlone in Sclerotinia sclerotiorum.
    Firoz MJ; Xiao X; Zhu FX; Fu YP; Jiang DH; Schnabel G; Luo CX
    Pest Manag Sci; 2016 Apr; 72(4):770-9. PubMed ID: 26037646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the Inhibitory Effects of Wuyiencin, a Secondary Metabolite of
    Yang M; Zhang W; Lv Z; Shi L; Zhang K; Ge B
    Plant Dis; 2022 Jan; 106(1):156-164. PubMed ID: 34184553
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.