These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30857680)
1. Excitation-emission fluorescence as a tool to assess the presence of grape-must caramel in PDO wine vinegars. Ríos-Reina R; Ocaña JA; Azcarate SM; Pérez-Bernal JL; Villar-Navarro M; Callejón RM Food Chem; 2019 Jul; 287():115-125. PubMed ID: 30857680 [TBL] [Abstract][Full Text] [Related]
2. Characterization and authentication of Spanish PDO wine vinegars using multidimensional fluorescence and chemometrics. Ríos-Reina R; Elcoroaristizabal S; Ocaña-González JA; García-González DL; Amigo JM; Callejón RM Food Chem; 2017 Sep; 230():108-116. PubMed ID: 28407890 [TBL] [Abstract][Full Text] [Related]
3. Assessment of UV-visible spectroscopy as a useful tool for determining grape-must caramel in high-quality wine and balsamic vinegars. Ríos-Reina R; Azcarate SM; Camiña J; Callejón RM Food Chem; 2020 Apr; 323():126792. PubMed ID: 32305807 [TBL] [Abstract][Full Text] [Related]
4. Classification of Sherry vinegars by combining multidimensional fluorescence, parafac and different classification approaches. Callejón RM; Amigo JM; Pairo E; Garmón S; Ocaña JA; Morales ML Talanta; 2012 Jan; 88():456-62. PubMed ID: 22265526 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of the volatile profile of wine vinegars with protected designation of origin by headspace stir bar sorptive extraction. Ríos-Reina R; Segura-Borrego MP; García-González DL; Morales ML; Callejón RM Food Res Int; 2019 Sep; 123():298-310. PubMed ID: 31284980 [TBL] [Abstract][Full Text] [Related]
6. Front-face fluorescence excitation-emission matrices in combination with three-way chemometrics for the discrimination and prediction of phenolic response to vineyard agronomic practices. Cabrera-Bañegil M; Valdés-Sánchez E; Moreno D; Airado-Rodríguez D; Durán-Merás I Food Chem; 2019 Jan; 270():162-172. PubMed ID: 30174030 [TBL] [Abstract][Full Text] [Related]
7. FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics. Kadiroğlu P J Sci Food Agric; 2018 Aug; 98(11):4121-4127. PubMed ID: 29393512 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence spectroscopy and multivariate methods for the determination of brandy adulteration with mixed wine spirit. Markechová D; Májek P; Sádecká J Food Chem; 2014 Sep; 159():193-9. PubMed ID: 24767044 [TBL] [Abstract][Full Text] [Related]
9. Modeling excitation-emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety. Azcarate SM; de Araújo Gomes A; Alcaraz MR; Ugulino de Araújo MC; Camiña JM; Goicoechea HC Food Chem; 2015 Oct; 184():214-9. PubMed ID: 25872447 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. Budak HN; Guzel-Seydim ZB J Sci Food Agric; 2010 Sep; 90(12):2021-6. PubMed ID: 20589746 [TBL] [Abstract][Full Text] [Related]
11. Potent aroma compounds of two red wine vinegars. Charles M; Martin B; Ginies C; Etievant P; Coste G; Guichard E J Agric Food Chem; 2000 Jan; 48(1):70-7. PubMed ID: 10637054 [TBL] [Abstract][Full Text] [Related]
12. Benchmarking laboratory-scale pomegranate vinegar against commercial wine vinegars: antioxidant activity and chemical composition. Kharchoufi S; Gomez J; Lasanta C; Castro R; Sainz F; Hamdi M J Sci Food Agric; 2018 Sep; 98(12):4749-4758. PubMed ID: 29542127 [TBL] [Abstract][Full Text] [Related]
13. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. van Dorsten FA; Grün CH; van Velzen EJ; Jacobs DM; Draijer R; van Duynhoven JP Mol Nutr Food Res; 2010 Jul; 54(7):897-908. PubMed ID: 20013882 [TBL] [Abstract][Full Text] [Related]
14. The Influence of Time and Storage Conditions on the Antioxidant Potential and Total Phenolic Content in Homemade Grape Vinegars. Antoniewicz J; Kochman J; Jakubczyk K; Janda-Milczarek K Molecules; 2021 Dec; 26(24):. PubMed ID: 34946694 [TBL] [Abstract][Full Text] [Related]
15. Application of sequential and orthogonalised-partial least squares (SO-PLS) regression to predict sensory properties of Cabernet Sauvignon wines from grape chemical composition. Niimi J; Tomic O; Næs T; Jeffery DW; Bastian SEP; Boss PK Food Chem; 2018 Aug; 256():195-202. PubMed ID: 29606438 [TBL] [Abstract][Full Text] [Related]
16. Electronic integrated multisensor tongue applied to grape juice and wine analysis. Moreno i Codinachs L; Kloock JP; Schöning MJ; Baldi A; Ipatov A; Bratov A; Jiménez-Jorquera C Analyst; 2008 Oct; 133(10):1440-8. PubMed ID: 18810293 [TBL] [Abstract][Full Text] [Related]
17. First evidence of epicatechin vanillate in grape seed and red wine. Ma W; Waffo-Téguo P; Jourdes M; Li H; Teissedre PL Food Chem; 2018 Sep; 259():304-310. PubMed ID: 29680058 [TBL] [Abstract][Full Text] [Related]
18. Classification of Chinese traditional cereal vinegars and antioxidant property predication by fluorescence spectroscopy. Long W; Lei G; Guan Y; Chen H; Hu Z; She Y; Fu H Food Chem; 2023 Oct; 424():136406. PubMed ID: 37216781 [TBL] [Abstract][Full Text] [Related]
19. Usefulness of fluorescence excitation-emission matrices in combination with PARAFAC, as fingerprints of red wines. Airado-Rodríguez D; Galeano-Díaz T; Durán-Merás I; Wold JP J Agric Food Chem; 2009 Mar; 57(5):1711-20. PubMed ID: 19215139 [TBL] [Abstract][Full Text] [Related]
20. Varieties, production, composition and health benefits of vinegars: A review. Ho CW; Lazim AM; Fazry S; Zaki UKHH; Lim SJ Food Chem; 2017 Apr; 221():1621-1630. PubMed ID: 27979138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]