These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30857890)

  • 1. Assessing kinematic variability during performance of Jebsen-Taylor Hand Function Test.
    Kontson KL; Wang S; Barovsky S; Bloomer C; Wozniczka L; Civillico EF
    J Hand Ther; 2020; 33(1):34-44. PubMed ID: 30857890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capacity Assessment of Prosthetic Performance for the Upper Limb (CAPPFUL): Characterization of Normative Kinematics and Performance.
    Boyle A; Prejean B; Ruhde L; Pool K; Bollinger C; Miguelez J; Conyers D; Ryan T; Kontson KL
    PM R; 2020 Sep; 12(9):870-881. PubMed ID: 31788979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of normative angular joint kinematics during two functional upper limb tasks.
    Valevicius AM; Boser QA; Lavoie EB; Chapman CS; Pilarski PM; Hebert JS; Vette AH
    Gait Posture; 2019 Mar; 69():176-186. PubMed ID: 30769260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional range of motion in the upper extremity and trunk joints: Nine functional everyday tasks with inertial sensors.
    Doğan M; Koçak M; Onursal Kılınç Ö; Ayvat F; Sütçü G; Ayvat E; Kılınç M; Ünver Ö; Aksu Yıldırım S
    Gait Posture; 2019 May; 70():141-147. PubMed ID: 30875600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic analysis of motor learning in upper limb body-powered bypass prosthesis training.
    Bloomer C; Wang S; Kontson K
    PLoS One; 2020; 15(1):e0226563. PubMed ID: 31978051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of range-of-motion and variability in upper body movements between transradial prosthesis users and able-bodied controls when executing goal-oriented tasks.
    Major MJ; Stine RL; Heckathorne CW; Fatone S; Gard SA
    J Neuroeng Rehabil; 2014 Sep; 11():132. PubMed ID: 25192744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of machine learning to the identification of joint degrees of freedom involved in abnormal movement during upper limb prosthesis use.
    Wang SL; Bloomer C; Civillico G; Kontson K
    PLoS One; 2021; 16(2):e0246795. PubMed ID: 33571311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task.
    Qin J; Lin JH; Faber GS; Buchholz B; Xu X
    J Electromyogr Kinesiol; 2014 Jun; 24(3):404-11. PubMed ID: 24642235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability of upper limb and trunk joint angles in healthy adults during activities of daily living.
    Engdahl SM; Gates DH
    Gait Posture; 2018 Feb; 60():41-47. PubMed ID: 29153478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of DEKA Arm and Body-Powered Upper Limb Prosthesis Joint Kinematics.
    Bloomer C; Kontson KL
    Arch Rehabil Res Clin Transl; 2020 Sep; 2(3):100057. PubMed ID: 33543084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reliability of the ELEPAP clinical protocol for the 3D kinematic evaluation of upper limb function.
    Vanezis A; Robinson MA; Darras N
    Gait Posture; 2015 Feb; 41(2):431-9. PubMed ID: 25534948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete 3D kinematics of upper extremity functional tasks.
    van Andel CJ; Wolterbeek N; Doorenbosch CA; Veeger DH; Harlaar J
    Gait Posture; 2008 Jan; 27(1):120-7. PubMed ID: 17459709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of upper limb kinematics in two activities of daily living with different handling requirements.
    Mesquita IA; Fonseca PFPD; Borgonovo-Santos M; Ribeiro E; Pinheiro ARV; Correia MV; Silva C
    Hum Mov Sci; 2020 Aug; 72():102632. PubMed ID: 32452388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper extremity coordination strategies depending on task demand during a basic daily activity.
    Ricci FP; Santiago PR; Zampar AC; Pinola LN; Fonseca Mde C
    Gait Posture; 2015 Oct; 42(4):472-8. PubMed ID: 26282047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of variation in human upper body parameters and motion for use in robotics based simulation.
    Lura DJ; Carey SL; Dubey RV
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6937-40. PubMed ID: 24111340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinematic differences between skill levels in the squash forehand drive, volley and drop strokes.
    Williams BK; Sanders RH; Ryu JH; Graham-Smith P; Sinclair PJ
    J Sports Sci; 2020 Jul; 38(13):1550-1559. PubMed ID: 32292100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper extremity kinematic trends of fly-casting: establishing the effects of line length.
    Allen JR; O'Keefe KB; McCue TJ; Borger JJ; Hahn ME
    Sports Biomech; 2008 Jan; 7(1):38-53. PubMed ID: 18341135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the role of task on kinematic variability and assessing consistency in individual responses across repetitive manual tasks.
    Oomen NMCW; Graham RB; Fischer SL
    Ergonomics; 2023 Jun; 66(6):749-761. PubMed ID: 36102976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity and Reliability of Upper Limb Kinematic Assessment Using a Markerless Motion Capture (MMC) System: A Pilot Study.
    Lam WWT; Fong KNK
    Arch Phys Med Rehabil; 2024 Apr; 105(4):673-681.e2. PubMed ID: 37981256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of proximal motor strategies on pianists' upper-limb movement variability.
    Turner C; Goubault E; Maso FD; Begon M; Verdugo F
    Hum Mov Sci; 2023 Aug; 90():103110. PubMed ID: 37295318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.