BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 30857936)

  • 1. Metabolic engineering for the optimization of hydrogen production in Escherichia coli: A review.
    Valle A; Cantero D; Bolívar J
    Biotechnol Adv; 2019; 37(5):616-633. PubMed ID: 30857936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current state and perspectives in hydrogen production by Escherichia coli: roles of hydrogenases in glucose or glycerol metabolism.
    Maeda T; Tran KT; Yamasaki R; Wood TK
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2041-2050. PubMed ID: 29368215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of enhanced hydrogen and ethanol Escherichia coli producer strains in a glycerol-based medium by screening in single-knock out mutant collections.
    Valle A; Cabrera G; Cantero D; Bolivar J
    Microb Cell Fact; 2015 Jun; 14():93. PubMed ID: 26122736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol.
    Tran KT; Maeda T; Wood TK
    Appl Microbiol Biotechnol; 2014 May; 98(10):4757-70. PubMed ID: 24615384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic analysis of TCA Escherichia coli mutants reveals suitable genetic backgrounds for enhanced hydrogen and ethanol production using glycerol as main carbon source.
    Valle A; Cabrera G; Muhamadali H; Trivedi DK; Ratray NJ; Goodacre R; Cantero D; Bolivar J
    Biotechnol J; 2015 Sep; 10(11):1750-61. PubMed ID: 26058953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering for enhanced hydrogen production: a review.
    Goyal Y; Kumar M; Gayen K
    Can J Microbiol; 2013 Feb; 59(2):59-78. PubMed ID: 23461513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen production by recombinant Escherichia coli strains.
    Maeda T; Sanchez-Torres V; Wood TK
    Microb Biotechnol; 2012 Mar; 5(2):214-25. PubMed ID: 21895995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional control of hydrogen production during mixed carbon fermentation by hydrogenases 4 (hyf) and 3 (hyc) in Escherichia coli.
    Trchounian K
    Gene; 2012 Sep; 506(1):156-60. PubMed ID: 22771922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli.
    Roger M; Brown F; Gabrielli W; Sargent F
    Curr Biol; 2018 Jan; 28(1):140-145.e2. PubMed ID: 29290558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering.
    Dharmadi Y; Murarka A; Gonzalez R
    Biotechnol Bioeng; 2006 Aug; 94(5):821-9. PubMed ID: 16715533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and the F(0)F(1)-ATPase.
    Trchounian K; Poladyan A; Vassilian A; Trchounian A
    Crit Rev Biochem Mol Biol; 2012; 47(3):236-49. PubMed ID: 22313414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic control analysis enables rational improvement of E. coli L-tryptophan producers but methylglyoxal formation limits glycerol-based production.
    Schoppel K; Trachtmann N; Korzin EJ; Tzanavari A; Sprenger GA; Weuster-Botz D
    Microb Cell Fact; 2022 Oct; 21(1):201. PubMed ID: 36195869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Strategy to Increase Microbial Hydrogen Production, Facilitating Intracellular Energy Reserves.
    Lee HJ; Park J; Lee JY; Kim P
    J Microbiol Biotechnol; 2016 Aug; 26(8):1452-6. PubMed ID: 27116993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical-biological hybrid system for carbon efficient isobutanol production.
    Treece TR; Pattanayak S; Matson MM; Cepeda MM; Berben LA; Atsumi S
    Metab Eng; 2023 Nov; 80():142-150. PubMed ID: 37739158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli.
    Durnin G; Clomburg J; Yeates Z; Alvarez PJ; Zygourakis K; Campbell P; Gonzalez R
    Biotechnol Bioeng; 2009 May; 103(1):148-61. PubMed ID: 19189409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Escherichia coli for poly(3-hydroxypropionate) production from glycerol and glucose.
    Wang Q; Yang P; Xian M; Feng L; Wang J; Zhao G
    Biotechnol Lett; 2014 Nov; 36(11):2257-62. PubMed ID: 25048226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical.
    Valdehuesa KN; Liu H; Nisola GM; Chung WJ; Lee SH; Park SJ
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3309-21. PubMed ID: 23494623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous expression of the human Phosphoenol Pyruvate Carboxykinase (hPEPCK-M) improves hydrogen and ethanol synthesis in the Escherichia coli dcuD mutant when grown in a glycerol-based medium.
    Valle A; Cabrera G; Cantero D; Bolivar J
    N Biotechnol; 2017 Mar; 35():1-12. PubMed ID: 27780757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of E. coli on formate and methanol via the reductive glycine pathway.
    Kim S; Lindner SN; Aslan S; Yishai O; Wenk S; Schann K; Bar-Even A
    Nat Chem Biol; 2020 May; 16(5):538-545. PubMed ID: 32042198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.