BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30858114)

  • 21. Enzyme- and pH-Responsive Microencapsulated Nanogels for Oral Delivery of siRNA to Induce TNF-α Knockdown in the Intestine.
    Knipe JM; Strong LE; Peppas NA
    Biomacromolecules; 2016 Mar; 17(3):788-97. PubMed ID: 26813877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery.
    Wang XL; Xu R; Lu ZR
    J Control Release; 2009 Mar; 134(3):207-13. PubMed ID: 19135104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing Gene Silencing and Physiochemical Properties in siRNA Bound Cationic Star-Polymer Complexes.
    Dearnley M; Reynolds NP; Cass P; Wei X; Shi S; Mohammed AA; Le T; Gunatillake P; Tizard ML; Thang SH; Hinton TM
    Biomacromolecules; 2016 Nov; 17(11):3532-3546. PubMed ID: 27709897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient delivery of Bcl-2-targeted siRNA using cationic polymer nanoparticles: downregulating mRNA expression level and sensitizing cancer cells to anticancer drug.
    Beh CW; Seow WY; Wang Y; Zhang Y; Ong ZY; Ee PL; Yang YY
    Biomacromolecules; 2009 Jan; 10(1):41-8. PubMed ID: 19072631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size-dependent knockdown potential of siRNA-loaded cationic nanohydrogel particles.
    Nuhn L; Tomcin S; Miyata K; Mailänder V; Landfester K; Kataoka K; Zentel R
    Biomacromolecules; 2014 Nov; 15(11):4111-21. PubMed ID: 25338185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening of siRNA nanoparticles for delivery to airway epithelial cells using high-content analysis.
    Hibbitts A; Lieggi N; McCabe O; Thomas W; Barlow J; O'Brien F; Cryan SA
    Ther Deliv; 2011 Aug; 2(8):987-99. PubMed ID: 22826866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Rationally Optimized Nanoparticle System for the Delivery of RNA Interference Therapeutics into Pancreatic Tumors in Vivo.
    Teo J; McCarroll JA; Boyer C; Youkhana J; Sagnella SM; Duong HT; Liu J; Sharbeen G; Goldstein D; Davis TP; Kavallaris M; Phillips PA
    Biomacromolecules; 2016 Jul; 17(7):2337-51. PubMed ID: 27305597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of disulfide-bridge on the activities of H-shape gemini-like cationic lipid based siRNA delivery.
    Ma XF; Sun J; Qiu C; Wu YF; Zheng Y; Yu MZ; Pei XW; Wei L; Niu YJ; Pang WH; Yang ZJ; Wang JC; Zhang Q
    J Control Release; 2016 Aug; 235():99-111. PubMed ID: 27242198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SiRNA-mediated in vivo gene knockdown by acid-degradable cationic nanohydrogel particles.
    Leber N; Kaps L; Aslam M; Schupp J; Brose A; Schäffel D; Fischer K; Diken M; Strand D; Koynov K; Tuettenberg A; Nuhn L; Zentel R; Schuppan D
    J Control Release; 2017 Feb; 248():10-23. PubMed ID: 27940184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RAFT Polymerization for the Synthesis of Tertiary Amine-Based Diblock Copolymer Nucleic Acid Delivery Vehicles.
    McClellan AK; Hao T; Brooks TA; Smith AE
    Macromol Biosci; 2017 Dec; 17(12):. PubMed ID: 29139616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyethyleneimine-based core-shell nanogels: a promising siRNA carrier for argininosuccinate synthetase mRNA knockdown in HeLa cells.
    Mimi H; Ho KM; Siu YS; Wu A; Li P
    J Control Release; 2012 Feb; 158(1):123-30. PubMed ID: 22094103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeted decationized polyplexes for siRNA delivery.
    Novo L; Takeda KM; Petteta T; Dakwar GR; van den Dikkenberg JB; Remaut K; Braeckmans K; van Nostrum CF; Mastrobattista E; Hennink WE
    Mol Pharm; 2015 Jan; 12(1):150-61. PubMed ID: 25384057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin.
    Ma X; Teh C; Zhang Q; Borah P; Choong C; Korzh V; Zhao Y
    Antioxid Redox Signal; 2014 Aug; 21(5):707-22. PubMed ID: 23931896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery.
    Han S; Cheng Q; Wu Y; Zhou J; Long X; Wei T; Huang Y; Zheng S; Zhang J; Deng L; Wang X; Liang XJ; Cao H; Liang Z; Dong A
    Biomaterials; 2015 Apr; 48():45-55. PubMed ID: 25701031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small interfering RNA delivery by polyethylenimine-functionalised porous silicon nanoparticles.
    Hasanzadeh Kafshgari M; Alnakhli M; Delalat B; Apostolou S; Harding FJ; Mäkilä E; Salonen JJ; Kuss BJ; Voelcker NH
    Biomater Sci; 2015 Dec; 3(12):1555-65. PubMed ID: 26343506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-Assembled Polypeptide Nanogels with Enzymatically Transformable Surface as a Small Interfering RNA Delivery Platform.
    Nishimura T; Yamada A; Umezaki K; Sawada SI; Mukai SA; Sasaki Y; Akiyoshi K
    Biomacromolecules; 2017 Dec; 18(12):3913-3923. PubMed ID: 29059529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Key determinants of siRNA delivery mediated by unique pH-responsive lipid-based liposomes.
    Sako M; Song F; Okamoto A; Koide H; Dewa T; Oku N; Asai T
    Int J Pharm; 2019 Oct; 569():118606. PubMed ID: 31415879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytocompatibility, membrane disruption, and siRNA delivery using environmentally responsive cationic nanogels.
    Spencer DS; Shodeinde AB; Beckman DW; Luu BC; Hodges HR; Peppas NA
    J Control Release; 2021 Apr; 332():608-619. PubMed ID: 33675879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Folate-decorated PEGylated triblock copolymer as a pH/reduction dual-responsive nanovehicle for targeted intracellular co-delivery of doxorubicin and Bcl-2 siRNA.
    Suo A; Qian J; Xu M; Xu W; Zhang Y; Yao Y
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():659-672. PubMed ID: 28482576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective cytoplasmic release of siRNA from liposomal carriers by controlling the electrostatic interaction of siRNA with a charge-invertible peptide, in response to cytoplasmic pH.
    Itakura S; Hama S; Matsui R; Kogure K
    Nanoscale; 2016 May; 8(20):10649-58. PubMed ID: 27145993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.