These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30858490)

  • 1. Biochemical and structural characterization of tomato polyphenol oxidases provide novel insights into their substrate specificity.
    Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2019 Mar; 9(1):4022. PubMed ID: 30858490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis.
    Panis F; Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.
    Molitor C; Mauracher SG; Rompel A
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1806-15. PubMed ID: 26976571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases.
    Kampatsikas I; Bijelic A; Pretzler M; Rompel A
    Sci Rep; 2017 Aug; 7(1):8860. PubMed ID: 28821733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes?
    Kampatsikas I; Rompel A
    Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the amino acid position controlling the different enzymatic activities in walnut tyrosinase isoenzymes (jrPPO1 and jrPPO2).
    Panis F; Rompel A
    Sci Rep; 2020 Jul; 10(1):10813. PubMed ID: 32616720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A specific amino acid residue in the catalytic site of dandelion polyphenol oxidases acts as 'selector' for substrate specificity.
    Prexler SM; Singh R; Moerschbacher BM; Dirks-Hofmeister ME
    Plant Mol Biol; 2018 Jan; 96(1-2):151-164. PubMed ID: 29218491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameters that enhance the bacterial expression of active plant polyphenol oxidases.
    Dirks-Hofmeister ME; Kolkenbrock S; Moerschbacher BM
    PLoS One; 2013; 8(10):e77291. PubMed ID: 24204791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Considerations Regarding Activity Determinants of Fungal Polyphenol Oxidases Based on Mutational and Structural Studies.
    Nikolaivits E; Valmas A; Dedes G; Topakas E; Dimarogona M
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity.
    Kampatsikas I; Bijelic A; Pretzler M; Rompel A
    Acta Crystallogr F Struct Biol Commun; 2017 Aug; 73(Pt 8):491-499. PubMed ID: 28777094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies.
    Prexler SM; Frassek M; Moerschbacher BM; Dirks-Hofmeister ME
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8757-8761. PubMed ID: 31037807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural diversity in the dandelion (Taraxacum officinale) polyphenol oxidase family results in different responses to model substrates.
    Dirks-Hofmeister ME; Singh R; Leufken CM; Inlow JK; Moerschbacher BM
    PLoS One; 2014; 9(6):e99759. PubMed ID: 24918587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular modeling of peroxidase and polyphenol oxidase: substrate specificity and active site comparison.
    Nokthai P; Lee VS; Shank L
    Int J Mol Sci; 2010 Sep; 11(9):3266-76. PubMed ID: 20957092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-perfect kinetic resolution of racemic p-chlorostyrene oxide by SlEH1, a novel epoxide hydrolase from Solanum lycopersicum with extremely high enantioselectivity.
    Hu BC; Hu D; Li C; Xu XF; Wen Z; Wu MC
    Int J Biol Macromol; 2020 Mar; 147():1213-1220. PubMed ID: 31739010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type-3 copper proteins: recent advances on polyphenol oxidases.
    Kaintz C; Mauracher SG; Rompel A
    Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit.
    Louveau T; Leitao C; Green S; Hamiaux C; van der Rest B; Dechy-Cabaret O; Atkinson RG; Chervin C
    FEBS J; 2011 Jan; 278(2):390-400. PubMed ID: 21166996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of a tetrameric dandelion polyphenol oxidase (PPO-6) reveals the site of subunit interaction.
    Dirks-Hofmeister ME; Inlow JK; Moerschbacher BM
    Plant Mol Biol; 2012 Sep; 80(2):203-17. PubMed ID: 22814940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of Dimocarpus longan polyphenol oxidase provides insights into its catalytic efficiency.
    Ruckthong L; Pretzler M; Kampatsikas I; Rompel A
    Sci Rep; 2022 Nov; 12(1):20322. PubMed ID: 36434079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three polyphenol oxidases from red clover (Trifolium pratense) differ in enzymatic activities and activation properties.
    Schmitz GE; Sullivan ML; Hatfield RD
    J Agric Food Chem; 2008 Jan; 56(1):272-80. PubMed ID: 18069787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach to recombinantly produce mature grape polyphenol oxidase.
    Li Y; McLarin MA; Middleditch MJ; Morrow SJ; Kilmartin PA; Leung IKH
    Biochimie; 2019 Oct; 165():40-47. PubMed ID: 31283975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.