These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 30858840)
1. Hexokinase and Glucokinases Are Essential for Fitness and Virulence in the Pathogenic Yeast Laurian R; Dementhon K; Doumèche B; Soulard A; Noel T; Lemaire M; Cotton P Front Microbiol; 2019; 10():327. PubMed ID: 30858840 [TBL] [Abstract][Full Text] [Related]
3. The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence. Childers DS; Raziunaite I; Mol Avelar G; Mackie J; Budge S; Stead D; Gow NA; Lenardon MD; Ballou ER; MacCallum DM; Brown AJ PLoS Pathog; 2016 Apr; 12(4):e1005566. PubMed ID: 27073846 [TBL] [Abstract][Full Text] [Related]
4. Sugar Phosphorylation Controls Carbon Source Utilization and Virulence of Wijnants S; Riedelberger M; Penninger P; Kuchler K; Van Dijck P Front Microbiol; 2020; 11():1274. PubMed ID: 32612591 [No Abstract] [Full Text] [Related]
5. The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans. Sandai D; Yin Z; Selway L; Stead D; Walker J; Leach MD; Bohovych I; Ene IV; Kastora S; Budge S; Munro CA; Odds FC; Gow NA; Brown AJ mBio; 2012 Dec; 3(6):. PubMed ID: 23232717 [TBL] [Abstract][Full Text] [Related]
6. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Rui O; Hahn M Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial complex I bridges a connection between regulation of carbon flexibility and gastrointestinal commensalism in the human fungal pathogen Candida albicans. Huang X; Chen X; He Y; Yu X; Li S; Gao N; Niu L; Mao Y; Wang Y; Wu X; Wu W; Wu J; Zhou D; Zhan X; Chen C PLoS Pathog; 2017 Jun; 13(6):e1006414. PubMed ID: 28570675 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomic and Metabolomic Analysis Revealed Roles of Yck2 in Carbon Metabolism and Morphogenesis of Liboro K; Yu SR; Lim J; So YS; Bahn YS; Eoh H; Park H Front Cell Infect Microbiol; 2021; 11():636834. PubMed ID: 33796481 [No Abstract] [Full Text] [Related]
9. Metabolic Reprogramming in the Opportunistic Yeast Candida albicans in Response to Hypoxia. Burgain A; Tebbji F; Khemiri I; Sellam A mSphere; 2020 Feb; 5(1):. PubMed ID: 32102943 [TBL] [Abstract][Full Text] [Related]
10. Metabolic adaptation via regulated enzyme degradation in the pathogenic yeast Candida albicans. Ting SY; Ishola OA; Ahmed MA; Tabana YM; Dahham S; Agha MT; Musa SF; Muhammed R; Than LT; Sandai D J Mycol Med; 2017 Mar; 27(1):98-108. PubMed ID: 28041812 [TBL] [Abstract][Full Text] [Related]
11. Metabolic flexibility and extensive adaptability governing multiple drug resistance and enhanced virulence in Padder SA; Ramzan A; Tahir I; Rehman RU; Shah AH Crit Rev Microbiol; 2022 Feb; 48(1):1-20. PubMed ID: 34213983 [TBL] [Abstract][Full Text] [Related]
12. Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. Flipphi M; van de Vondervoort PJ; Ruijter GJ; Visser J; Arst HN; Felenbok B J Biol Chem; 2003 Apr; 278(14):11849-57. PubMed ID: 12519784 [TBL] [Abstract][Full Text] [Related]
13. Functional Mapping of Transcription Factor Grf10 That Regulates Adenine-Responsive and Filamentation Genes in Candida albicans. Wangsanut T; Tobin JM; Rolfes RJ mSphere; 2018 Oct; 3(5):. PubMed ID: 30355670 [TBL] [Abstract][Full Text] [Related]
14. Plasma Membrane Phosphatidylinositol-4-Phosphate Is Not Necessary for Candida albicans Viability yet Is Key for Cell Wall Integrity and Systemic Infection. Garcia-Rodas R; Labbaoui H; Orange F; Solis N; Zaragoza O; Filler SG; Bassilana M; Arkowitz RA mBio; 2021 Feb; 13(1):e0387321. PubMed ID: 35164565 [TBL] [Abstract][Full Text] [Related]
15. Aspergillus fumigatus catalytic glucokinase and hexokinase: expression analysis and importance for germination, growth, and conidiation. Fleck CB; Brock M Eukaryot Cell; 2010 Jul; 9(7):1120-35. PubMed ID: 20453072 [TBL] [Abstract][Full Text] [Related]
16. Sugar Sensing and Signaling in Van Ende M; Wijnants S; Van Dijck P Front Microbiol; 2019; 10():99. PubMed ID: 30761119 [No Abstract] [Full Text] [Related]
17. The hexokinase of the hyperthermophile Thermoproteus tenax. ATP-dependent hexokinases and ADP-dependent glucokinases, teo alternatives for glucose phosphorylation in Archaea. Dörr C; Zaparty M; Tjaden B; Brinkmann H; Siebers B J Biol Chem; 2003 May; 278(21):18744-53. PubMed ID: 12626506 [TBL] [Abstract][Full Text] [Related]
18. Characterisation of the Aspergillus nidulans frA1 mutant: hexose phosphorylation and apparent lack of involvement of hexokinase in glucose repression. Ruijter GJ; Panneman H; van den Broeck HC; Bennett JM; Visser J FEMS Microbiol Lett; 1996 Jun; 139(2-3):223-28. PubMed ID: 8674991 [TBL] [Abstract][Full Text] [Related]