These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30858853)

  • 1. Hyperspectral Analysis of Leaf Pigments and Nutritional Elements in Tallgrass Prairie Vegetation.
    Ling B; Goodin DG; Raynor EJ; Joern A
    Front Plant Sci; 2019; 10():142. PubMed ID: 30858853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poor relationships between NEON Airborne Observation Platform data and field-based vegetation traits at a mesic grassland.
    Pau S; Nippert JB; Slapikas R; Griffith D; Bachle S; Helliker BR; O'Connor RC; Riley WJ; Still CJ; Zaricor M
    Ecology; 2022 Feb; 103(2):e03590. PubMed ID: 34787909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [An Analysis of the Spectrums between Different Canopy Structures Based on Hyperion Hyperspectral Data in a Temperate Forest of Northeast China].
    Yu QZ; Wang SQ; Huang K; Zhou L; Chen DC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1980-5. PubMed ID: 26717763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dual NDVI Ratio Vegetation Index: A Kind of Vegetation Index Assessing Leaf Carotenoid Content Based on Leaf Optical Properties Model].
    Wang H; Shi R; Liu PD; Gao W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2189-94. PubMed ID: 30035980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.
    Junker LV; Ensminger I
    Tree Physiol; 2016 Jun; 36(6):694-711. PubMed ID: 26928514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf reflectance can surrogate foliar economics better than physiological traits across macrophyte species.
    Villa P; Bolpagni R; Pinardi M; Tóth VR
    Plant Methods; 2021 Nov; 17(1):115. PubMed ID: 34758853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperspectral Canopy Sensing of Wheat Septoria Tritici Blotch Disease.
    Yu K; Anderegg J; Mikaberidze A; Karisto P; Mascher F; McDonald BA; Walter A; Hund A
    Front Plant Sci; 2018; 9():1195. PubMed ID: 30174678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperspectral remote sensing of plant pigments.
    Blackburn GA
    J Exp Bot; 2007; 58(4):855-67. PubMed ID: 16990372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of leaf biochemical and structural properties of cerrado life forms: implications for remote sensing.
    Ball A; Sanchez-Azofeifa A; Portillo-Quintero C; Rivard B; Castro-Contreras S; Fernandes G
    PLoS One; 2015; 10(2):e0117659. PubMed ID: 25692675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
    Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Retrieval of leaf water content of winter wheat from canopy hyperspectral data using partial least square regression].
    Wang YY; Li GC; Zhang LJ; Fan JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):1070-4. PubMed ID: 20545164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status].
    Tan CW; Zhou QB; Qi L; Zhuang HY
    Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1261-8. PubMed ID: 18808018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tight coupling of leaf area index to canopy nitrogen and phosphorus across heterogeneous tallgrass prairie communities.
    Klodd AE; Nippert JB; Ratajczak Z; Waring H; Phoenix GK
    Oecologia; 2016 Nov; 182(3):889-98. PubMed ID: 27561778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fraction of absorbed photosynthetically active radiation over summer maize canopy estimated by hyperspectral remote sensing under different drought conditions.].
    Liu EH; Zhou GS; Zhou L
    Ying Yong Sheng Tai Xue Bao; 2019 Jun; 30(6):2021-2029. PubMed ID: 31257775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Hyperspectral Analysis and Electrolyte Leakage Inversion of Creeping Bentgrass under Salt Stress].
    Xiao GZ; Wu XL; Teng K; Chao YH; Li WT; Han LB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3630-6. PubMed ID: 30199171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.
    Zarco-Tejada PJ; Miller JR; Mohammed GH; Noland TL; Sampson PH
    J Environ Qual; 2002; 31(5):1433-41. PubMed ID: 12371159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Canopy Interception for a Tallgrass Prairie under Juniper Encroachment.
    Zou CB; Caterina GL; Will RE; Stebler E; Turton D
    PLoS One; 2015; 10(11):e0141422. PubMed ID: 26544182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Dynamic Canopy Variables Using Hyperspectral Derived Vegetation Indices Under Varying N Rates at Diverse Phenological Stages of Rice.
    Din M; Ming J; Hussain S; Ata-Ul-Karim ST; Rashid M; Tahir MN; Hua S; Wang S
    Front Plant Sci; 2018; 9():1883. PubMed ID: 30697219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Hyperspectral remote sensing estimation models on vegetation coverage of natural grassland].
    Liu Z; Huang J; Wu X; Dong Y; Wang F; Liu P
    Ying Yong Sheng Tai Xue Bao; 2006 Jun; 17(6):997-1002. PubMed ID: 16964930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.