These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30859246)

  • 1. Rapid Analysis of Acrylamide in Tap and Well Water Samples by Solvent Terminated Dispersive Liquid-Liquid Microextraction Followed by GC-FID.
    Sayah M; Kiarostami V
    Bull Environ Contam Toxicol; 2019 Apr; 102(4):560-566. PubMed ID: 30859246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of amantadine in biological fluids using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection.
    Farajzadeh MA; Nouri N; Alizadeh Nabil AA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec; 940():142-9. PubMed ID: 24157523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous extraction of Cu
    Farajvand M; Kiarostami V; Davallo M; Ghaedi A
    Environ Monit Assess; 2019 Apr; 191(5):287. PubMed ID: 31001697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of ultrasound-assisted emulsification and dispersive liquid-liquid microextraction methods for the speciation of inorganic selenium in environmental water samples using low density extraction solvents.
    Najafi NM; Tavakoli H; Abdollahzadeh Y; Alizadeh R
    Anal Chim Acta; 2012 Feb; 714():82-8. PubMed ID: 22244140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Solvent Terminated Dispersive Liquid-Liquid Microextraction of Copper Ions in Water and Food Samples Using Artificial Neural Networks Coupled Bees Algorithm.
    Farajvand M; Kiarostami V; Davallo M; Ghaedi A
    Bull Environ Contam Toxicol; 2018 Mar; 100(3):402-408. PubMed ID: 29279992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of air-agitated liquid-liquid microextraction technique and conventional dispersive liquid-liquid micro-extraction for determination of triazole pesticides in aqueous samples by gas chromatography with flame ionization detection.
    Farajzadeh MA; Mogaddam MR; Aghdam AA
    J Chromatogr A; 2013 Jul; 1300():70-8. PubMed ID: 23473511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-density solvent-based dispersive liquid-liquid microextraction combined with single-drop microextraction for the fast determination of chlorophenols in environmental water samples by high performance liquid chromatography-ultraviolet detection.
    Li X; Xue A; Chen H; Li S
    J Chromatogr A; 2013 Mar; 1280():9-15. PubMed ID: 23375770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of ultrasound-enhanced air-assisted liquid-liquid microextraction and low-density solvent-based dispersive liquid-liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples.
    Barfi B; Asghari A; Rajabi M; Goochani Moghadam A; Mirkhani N; Ahmadi F
    J Pharm Biomed Anal; 2015; 111():297-305. PubMed ID: 25916913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction for the determination of organochlorine pesticides in aqueous samples.
    Li Y; Chen PS; Huang SD
    J Chromatogr A; 2013 Jul; 1300():51-7. PubMed ID: 23566919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and sensitive analysis of polychlorinated biphenyls and acrylamide in food samples using ionic liquid-based in situ dispersive liquid-liquid microextraction coupled to headspace gas chromatography.
    Zhang C; Cagliero C; Pierson SA; Anderson JL
    J Chromatogr A; 2017 Jan; 1481():1-11. PubMed ID: 28017564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Low-density solvent-based solvent demulsification dispersive liquid-liquid microextraction combined with gas chromatography for determination of polycyclic aromatic hydrocarbons in water samples].
    Zhu B; Chen H; Li S
    Se Pu; 2012 Feb; 30(2):201-6. PubMed ID: 22679837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid extraction of copper ions in water, tea, milk and apple juice by solvent-terminated dispersive liquid-liquid microextraction using
    Farajvand M; Kiarostami V; Davallo M; Ghaedi A; Fatahi F
    J Food Sci Technol; 2019 Sep; 56(9):4224-4232. PubMed ID: 31477993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green aspects, developments and perspectives of liquid phase microextraction techniques.
    Spietelun A; Marcinkowski Ł; de la Guardia M; Namieśnik J
    Talanta; 2014 Feb; 119():34-45. PubMed ID: 24401382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preconcentration of trace amounts of methadone in human urine, plasma, saliva and sweat samples using dispersive liquid-liquid microextraction followed by high performance liquid chromatography.
    Ranjbari E; Golbabanezhad-Azizi AA; Hadjmohammadi MR
    Talanta; 2012 May; 94():116-22. PubMed ID: 22608423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.
    Asadollahzadeh M; Tavakoli H; Torab-Mostaedi M; Hosseini G; Hemmati A
    Talanta; 2014 Jun; 123():25-31. PubMed ID: 24725860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of In-Syringe Dispersive Liquid-Liquid Microextraction and Narrow-Bore Tube Dispersive Liquid-Liquid Microextraction for the Determination of Trace Amounts of BTEX in Water Samples.
    Rahmani M; Kaykhaii M; Ghasemi E; Tahernejad M
    J Chromatogr Sci; 2015 Aug; 53(7):1210-6. PubMed ID: 25595286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet for the determination of thiamphenicol and florfenicol in environmental water samples.
    Peng G; He Q; Al-Hamadani SM; Zhou G; Liu M; Zhu H; Chen J
    Ecotoxicol Environ Saf; 2015 May; 115():229-33. PubMed ID: 25723132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water samples using solid-phase extraction followed by dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection.
    Samadi S; Sereshti H; Assadi Y
    J Chromatogr A; 2012 Jan; 1219():61-5. PubMed ID: 22153286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation and determination of amitriptyline and nortriptyline by dispersive liquid-liquid microextraction combined with gas chromatography flame ionization detection.
    Yazdi AS; Razavi N; Yazdinejad SR
    Talanta; 2008 Jun; 75(5):1293-9. PubMed ID: 18585215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous determination of sorbic and benzoic acids in milk products using an optimised microextraction technique followed by gas chromatography.
    Abedi AS; Mohammadi A; Azadniya E; Mortazavian AM; Khaksar R
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(1):21-8. PubMed ID: 24397823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.