These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30859367)

  • 1. Zero-Inflated Regime-Switching Stochastic Differential Equation Models for Highly Unbalanced Multivariate, Multi-Subject Time-Series Data.
    Lu ZH; Chow SM; Ram N; Cole PM
    Psychometrika; 2019 Jun; 84(2):611-645. PubMed ID: 30859367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian Forecasting with a Regime-Switching Zero-Inflated Multilevel Poisson Regression Model: An Application to Adolescent Alcohol Use with Spatial Covariates.
    Li Y; Oravecz Z; Zhou S; Bodovski Y; Barnett IJ; Chi G; Zhou Y; Friedman NP; Vrieze SI; Chow SM
    Psychometrika; 2022 Jun; 87(2):376-402. PubMed ID: 35076813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching.
    Chow SM; Ou L; Ciptadi A; Prince EB; You D; Hunter MD; Rehg JM; Rozga A; Messinger DS
    Psychometrika; 2018 Jun; 83(2):476-510. PubMed ID: 29557080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling group movement with behaviour switching in continuous time.
    Niu M; Frost F; Milner JE; Skarin A; Blackwell PG
    Biometrics; 2022 Mar; 78(1):286-299. PubMed ID: 33270218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latent Ornstein-Uhlenbeck models for Bayesian analysis of multivariate longitudinal categorical responses.
    Tran TD; Lesaffre E; Verbeke G; Duyck J
    Biometrics; 2021 Jun; 77(2):689-701. PubMed ID: 32391570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling interdependent animal movement in continuous time.
    Niu M; Blackwell PG; Skarin A
    Biometrics; 2016 Jun; 72(2):315-24. PubMed ID: 26812666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian inference for stochastic kinetic models using a diffusion approximation.
    Golightly A; Wilkinson DJ
    Biometrics; 2005 Sep; 61(3):781-8. PubMed ID: 16135029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian Data Analysis with the Bivariate Hierarchical Ornstein-Uhlenbeck Process Model.
    Oravecz Z; Tuerlinckx F; Vandekerckhove J
    Multivariate Behav Res; 2016; 51(1):106-19. PubMed ID: 26881960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo method for Bayesian inference in frailty models.
    Clayton DG
    Biometrics; 1991 Jun; 47(2):467-85. PubMed ID: 1912256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance comparison of first-order conditional estimation with interaction and Bayesian estimation methods for estimating the population parameters and its distribution from data sets with a low number of subjects.
    Pradhan S; Song B; Lee J; Chae JW; Kim KI; Back HM; Han N; Kwon KI; Yun HY
    BMC Med Res Methodol; 2017 Dec; 17(1):154. PubMed ID: 29191177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian inference for a correlated 2 x 2 table with a structural zero.
    Stamey JD; Seaman JW; Young DM
    Biom J; 2006 Apr; 48(2):233-44. PubMed ID: 16708775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian latent variable models for hierarchical clustered count outcomes with repeated measures in microbiome studies.
    Xu L; Paterson AD; Xu W
    Genet Epidemiol; 2017 Apr; 41(3):221-232. PubMed ID: 28111783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods.
    O'Neill PD
    Math Biosci; 2002; 180():103-14. PubMed ID: 12387918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero-state Markov switching count-data models: an empirical assessment.
    Malyshkina NV; Mannering FL
    Accid Anal Prev; 2010 Jan; 42(1):122-30. PubMed ID: 19887152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hierarchical latent stochastic differential equation model for affective dynamics.
    Oravecz Z; Tuerlinckx F; Vandekerckhove J
    Psychol Methods; 2011 Dec; 16(4):468-90. PubMed ID: 21823796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing the overall effects of the microbiome abundance data with a Bayesian predictive value approach.
    Zhang X; Yi N
    Stat Methods Med Res; 2022 Oct; 31(10):1992-2003. PubMed ID: 35695247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian inference of risk ratio of two proportions using a double sampling scheme.
    Rahardja D; Young DM
    J Biopharm Stat; 2011 May; 21(3):393-404. PubMed ID: 21442515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus.
    Korostil IA; Peters GW; Cornebise J; Regan DG
    Stat Med; 2013 May; 32(11):1917-53. PubMed ID: 22961869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian analysis for finite mixture in non-recursive non-linear structural equation models.
    Li Y; Wang HZ
    Br J Math Stat Psychol; 2010 May; 63(Pt 2):361-77. PubMed ID: 19719904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian analysis of transformation latent variable models with multivariate censored data.
    Song XY; Pan D; Liu PF; Cai JH
    Stat Methods Med Res; 2016 Oct; 25(5):2337-2358. PubMed ID: 24535555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.