These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30860218)

  • 1. Effect of microchannel structure and fluid properties on non-inertial particle migration.
    Maitri RV; De S; Koesen SP; Wyss HM; van der Schaaf J; Kuipers JAM; Padding JT; Peters EAJF
    Soft Matter; 2019 Mar; 15(12):2648-2656. PubMed ID: 30860218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel.
    Kwon JY; Kim T; Kim J; Cho Y
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33187390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle Focusing in a Straight Microchannel with Non-Rectangular Cross-Section.
    Kim U; Kwon JY; Kim T; Cho Y
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of non-Newtonian power law rheology on inertial migration of particles in channel flow.
    Hu X; Lin J; Chen D; Ku X
    Biomicrofluidics; 2020 Jan; 14(1):014105. PubMed ID: 31933715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel.
    Del Giudice F; Sathish S; D'Avino G; Shen AQ
    Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elasto-Inertial Focusing Mechanisms of Particles in Shear-Thinning Viscoelastic Fluid in Rectangular Microchannels.
    Naderi MM; Barilla L; Zhou J; Papautsky I; Peng Z
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel.
    Kim B; Kim JM
    Biomicrofluidics; 2016 Mar; 10(2):024111. PubMed ID: 27051468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow of Non-Newtonian Fluids in a Single-Cavity Microchannel.
    Raihan MK; Jagdale PP; Wu S; Shao X; Bostwick JB; Pan X; Xuan X
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction-Expansion Microchannel.
    Jagdale PP; Li D; Shao X; Bostwick JB; Xuan X
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32182650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elasto-inertial migration of deformable capsules in a microchannel.
    Raffiee AH; Dabiri S; Ardekani AM
    Biomicrofluidics; 2017 Nov; 11(6):064113. PubMed ID: 29333202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid rheological effects on streaming dielectrophoresis in a post-array microchannel.
    Bentor J; Raihan MK; McNeely C; Liu Z; Song Y; Xuan X
    Electrophoresis; 2022 Mar; 43(5-6):717-723. PubMed ID: 34657307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH
    Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle dispersion in porous media: Differentiating effects of geometry and fluid rheology.
    Jacob JDC; Krishnamoorti R; Conrad JC
    Phys Rev E; 2017 Aug; 96(2-1):022610. PubMed ID: 28950508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel.
    Yang S; Kim JY; Lee SJ; Lee SS; Kim JM
    Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic Particle Focusing and Separation in a Spiral Channel.
    Feng H; Jafek AR; Wang B; Brady H; Magda JJ; Gale BK
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental study of the merging flow of polymer solutions in a T-shaped microchannel.
    Song L; Raihan MK; Yu L; Wu S; Kim N; Till SR; Song Y; Xuan X
    Soft Matter; 2023 May; 19(17):3207-3214. PubMed ID: 37074114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroosmotic flow of non-Newtonian fluids in a constriction microchannel.
    Ko CH; Li D; Malekanfard A; Wang YN; Fu LM; Xuan X
    Electrophoresis; 2019 May; 40(10):1387-1394. PubMed ID: 30346029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress of particle migration in viscoelastic fluids.
    Yuan D; Zhao Q; Yan S; Tang SY; Alici G; Zhang J; Li W
    Lab Chip; 2018 Feb; 18(4):551-567. PubMed ID: 29340388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial Focusing and Separation of Particles in Similar Curved Channels.
    Ying Y; Lin Y
    Sci Rep; 2019 Nov; 9(1):16575. PubMed ID: 31719582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Ionic Strength on Lateral Particle Migration in Shear-Thinning Xanthan Gum Solutions.
    Cho M; Hong SO; Lee SH; Hyun K; Kim JM
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31443169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.