These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 30860231)
1. Collective oscillation in dense suspension of self-propelled chiral rods. Liu Y; Yang Y; Li B; Feng XQ Soft Matter; 2019 Apr; 15(14):2999-3007. PubMed ID: 30860231 [TBL] [Abstract][Full Text] [Related]
2. Collective behavior of penetrable self-propelled rods in two dimensions. Abkenar M; Marx K; Auth T; Gompper G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451 [TBL] [Abstract][Full Text] [Related]
3. Collective behavior of self-propelled rods with quorum sensing. Abaurrea Velasco C; Abkenar M; Gompper G; Auth T Phys Rev E; 2018 Aug; 98(2-1):022605. PubMed ID: 30253508 [TBL] [Abstract][Full Text] [Related]
4. Emergent states in dense systems of active rods: from swarming to turbulence. Wensink HH; Löwen H J Phys Condens Matter; 2012 Nov; 24(46):464130. PubMed ID: 23114651 [TBL] [Abstract][Full Text] [Related]
5. Collective behavior of chiral active particles with anisotropic interactions in a confined space. Lei T; Zhao C; Yan R; Zhao N Soft Matter; 2023 Feb; 19(7):1312-1329. PubMed ID: 36723153 [TBL] [Abstract][Full Text] [Related]
6. Defect dynamics in clusters of self-propelled rods in circular confinement. Wang Z; Si T; Hao J; Guan Y; Qin F; Yang B; Cao W Eur Phys J E Soft Matter; 2019 Nov; 42(11):150. PubMed ID: 31773335 [TBL] [Abstract][Full Text] [Related]
12. Spontaneous population oscillation of confined active granular particles. Li W; Li L; Shi Q; Yang M; Zheng N Soft Matter; 2022 Jul; 18(29):5459-5464. PubMed ID: 35822840 [TBL] [Abstract][Full Text] [Related]
13. Large-scale collective properties of self-propelled rods. Ginelli F; Peruani F; Bär M; Chaté H Phys Rev Lett; 2010 May; 104(18):184502. PubMed ID: 20482178 [TBL] [Abstract][Full Text] [Related]
14. Driving dynamic colloidal assembly using eccentric self-propelled colloids. Ma Z; Lei QL; Ni R Soft Matter; 2017 Dec; 13(47):8940-8946. PubMed ID: 29144529 [TBL] [Abstract][Full Text] [Related]
15. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods. Kuan HS; Blackwell R; Hough LE; Glaser MA; Betterton MD Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(6):060501. PubMed ID: 26764616 [TBL] [Abstract][Full Text] [Related]
16. Controlling the transport of the mixture involving active and passive rods in confined channel. Wang Z; Hao J Soft Matter; 2023 Aug; 19(33):6368-6375. PubMed ID: 37577816 [TBL] [Abstract][Full Text] [Related]
17. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Wang W; Duan W; Ahmed S; Sen A; Mallouk TE Acc Chem Res; 2015 Jul; 48(7):1938-46. PubMed ID: 26057233 [TBL] [Abstract][Full Text] [Related]
18. Geometric control of active collective motion. Theillard M; Alonso-Matilla R; Saintillan D Soft Matter; 2017 Jan; 13(2):363-375. PubMed ID: 27906393 [TBL] [Abstract][Full Text] [Related]
19. Simulations of structure formation by confined dipolar active particles. Telezki V; Klumpp S Soft Matter; 2020 Dec; 16(46):10537-10547. PubMed ID: 33078178 [TBL] [Abstract][Full Text] [Related]
20. Athermal phase separation of self-propelled particles with no alignment. Fily Y; Marchetti MC Phys Rev Lett; 2012 Jun; 108(23):235702. PubMed ID: 23003972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]