These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30860542)

  • 41. A new small-angle X-ray scattering model for polymer spherulites with a limited lateral size of the lamellar crystals.
    Li XY; Ding JJ; Liu YP; Tian XY
    IUCrJ; 2019 Sep; 6(Pt 5):968-983. PubMed ID: 31576229
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Origin of melting point depression for rare gas solids confined in carbon pores.
    Morishige K; Kataoka T
    J Chem Phys; 2015 Jul; 143(3):034707. PubMed ID: 26203042
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of surface property on the crystallization of hentetracontane under nanoscopic cylindrical confinement.
    Kim BS; Jeong YG; Shin K
    J Phys Chem B; 2013 May; 117(19):5978-88. PubMed ID: 23586535
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers.
    Hamilton BD; Ha JM; Hillmyer MA; Ward MD
    Acc Chem Res; 2012 Mar; 45(3):414-23. PubMed ID: 22035061
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystallization, recrystallization, and melting lines in syndiotactic polypropylene crystallized from quiescent melt and semicrystalline state due to stress-induced localized melting and recrystallization.
    Lu Y; Wang Y; Fu L; Jiang Z; Men Y
    J Phys Chem B; 2014 Nov; 118(45):13019-23. PubMed ID: 25343475
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How thermal stress alters the confinement of polymers vitrificated in nanopores.
    Teng C; Li L; Wang Y; Wang R; Chen W; Wang X; Xue G
    J Chem Phys; 2017 May; 146(20):203319. PubMed ID: 28571335
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure of ice confined in silica nanopores.
    Mohammed S; Asgar H; Benmore CJ; Gadikota G
    Phys Chem Chem Phys; 2021 Jun; 23(22):12706-12717. PubMed ID: 34037014
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Understanding polymer-lipid solid dispersions--the properties of incorporated lipids govern the crystallisation behaviour of PEG.
    Unga J; Matsson P; Mahlin D
    Int J Pharm; 2010 Feb; 386(1-2):61-70. PubMed ID: 19900523
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.
    Meissner J; Prause A; Findenegg GH
    J Phys Chem Lett; 2016 May; 7(10):1816-20. PubMed ID: 27124392
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of Confinement and Pressure on the Vibrational Behavior of Nano-Confined Propane.
    Gautam S; Kolesnikov AI; Rother G; Dai S; Qiao ZA; Cole D
    J Phys Chem A; 2018 Aug; 122(33):6736-6745. PubMed ID: 30040898
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanostructured polymers with embedded self-assembled networks: reversibly tunable phase behaviors and physical properties.
    Lai WC; Hsueh CY; Chang CW
    Soft Matter; 2019 Aug; 15(31):6427-6435. PubMed ID: 31342049
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of the polymer matrix in solvent-free hot melt extrusion continuous process for mechanochemical synthesis of pharmaceutical cocrystal.
    Gajda M; Nartowski KP; Pluta J; Karolewicz B
    Eur J Pharm Biopharm; 2018 Oct; 131():48-59. PubMed ID: 30205892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accurate characterization of single track-etched, conical nanopores.
    Apel PY; Ramirez P; Blonskaya IV; Orelovitch OL; Sartowska BA
    Phys Chem Chem Phys; 2014 Aug; 16(29):15214-23. PubMed ID: 24939748
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanoporous surface wetting behavior: the line tension influence.
    Raspal V; Awitor KO; Massard C; Feschet-Chassot E; Bokalawela RS; Johnson MB
    Langmuir; 2012 Jul; 28(30):11064-71. PubMed ID: 22746264
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ionic exclusion phase transition in neutral and weakly charged cylindrical nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    J Chem Phys; 2011 Feb; 134(7):074706. PubMed ID: 21341868
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA.
    Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T
    Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of the microstructure of semicrystalline solid dispersions.
    Zhu Q; Taylor LS; Harris MT
    Mol Pharm; 2010 Aug; 7(4):1291-300. PubMed ID: 20550195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low temperature phase properties of water confined in mesoporous silica MCM-41: thermodynamic and neutron scattering study.
    Kittaka S; Takahara S; Matsumoto H; Wada Y; Satoh TJ; Yamaguchi T
    J Chem Phys; 2013 May; 138(20):204714. PubMed ID: 23742507
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase diagram of supercooled water confined to hydrophilic nanopores.
    Limmer DT; Chandler D
    J Chem Phys; 2012 Jul; 137(4):044509. PubMed ID: 22852633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.