These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 30861020)
1. Engineering, and production of functionally active human Furin in N. benthamiana plant: In vivo post-translational processing of target proteins by Furin in plants. Mamedov T; Musayeva I; Acsora R; Gun N; Gulec B; Mammadova G; Cicek K; Hasanova G PLoS One; 2019; 14(3):e0213438. PubMed ID: 30861020 [TBL] [Abstract][Full Text] [Related]
2. Production of Functionally Active and Immunogenic Non-Glycosylated Protective Antigen from Bacillus anthracis in Nicotiana benthamiana by Co-Expression with Peptide-N-Glycosidase F (PNGase F) of Flavobacterium meningosepticum. Mamedov T; Chichester JA; Jones RM; Ghosh A; Coffin MV; Herschbach K; Prokhnevsky AI; Streatfield SJ; Yusibov V PLoS One; 2016; 11(4):e0153956. PubMed ID: 27101370 [TBL] [Abstract][Full Text] [Related]
3. In vivo production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expression with Endo-β-N-acetylglucosaminidase H (Endo H) of Streptomyces plicatus. Mamedov T; Cicek K; Gulec B; Ungor R; Hasanova G PLoS One; 2017; 12(8):e0183589. PubMed ID: 28827815 [TBL] [Abstract][Full Text] [Related]
4. Co-expression of the protease furin in Nicotiana benthamiana leads to efficient processing of latent transforming growth factor-β1 into a biologically active protein. Wilbers RH; Westerhof LB; van Raaij DR; van Adrichem M; Prakasa AD; Lozano-Torres JL; Bakker J; Smant G; Schots A Plant Biotechnol J; 2016 Aug; 14(8):1695-704. PubMed ID: 26834022 [TBL] [Abstract][Full Text] [Related]
5. Production of non-glycosylated recombinant proteins in Nicotiana benthamiana plants by co-expressing bacterial PNGase F. Mamedov T; Ghosh A; Jones RM; Mett V; Farrance CE; Musiychuk K; Horsey A; Yusibov V Plant Biotechnol J; 2012 Sep; 10(7):773-82. PubMed ID: 22520228 [TBL] [Abstract][Full Text] [Related]
6. In vivo deglycosylation of recombinant proteins in plants by co-expression with bacterial PNGase F. Mamedov T; Yusibov V Bioengineered; 2013; 4(5):338-42. PubMed ID: 23328084 [TBL] [Abstract][Full Text] [Related]
7. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Nakayama K Biochem J; 1997 Nov; 327 ( Pt 3)(Pt 3):625-35. PubMed ID: 9599222 [TBL] [Abstract][Full Text] [Related]
8. Role of prohormone convertases in pro-neuropeptide Y processing: coexpression and in vitro kinetic investigations. Brakch N; Rist B; Beck-Sickinger AG; Goenaga J; Wittek R; Bürger E; Brunner HR; Grouzmann E Biochemistry; 1997 Dec; 36(51):16309-20. PubMed ID: 9405066 [TBL] [Abstract][Full Text] [Related]
9. Endoproteolytic processing of integrin pro-alpha subunits involves the redundant function of furin and proprotein convertase (PC) 5A, but not paired basic amino acid converting enzyme (PACE) 4, PC5B or PC7. Lissitzky JC; Luis J; Munzer JS; Benjannet S; Parat F; Chrétien M; Marvaldi J; Seidah NG Biochem J; 2000 Feb; 346 Pt 1(Pt 1):133-8. PubMed ID: 10657249 [TBL] [Abstract][Full Text] [Related]
10. In vitro processing of anthrax toxin protective antigen by recombinant PC1 (SPC3) and bovine intermediate lobe secretory vesicle membranes. Friedman TC; Gordon VM; Leppla SH; Klimpel KR; Birch NP; Loh YP Arch Biochem Biophys; 1995 Jan; 316(1):5-13. PubMed ID: 7840657 [TBL] [Abstract][Full Text] [Related]
11. Engineering protein processing of the mammary gland to produce abundant hemophilia B therapy in milk. Zhao J; Xu W; Ross JW; Walters EM; Butler SP; Whyte JJ; Kelso L; Fatemi M; Vanderslice NC; Giroux K; Spate LD; Samuel MS; Murphy CN; Wells KD; Masiello NC; Prather RS; Velander WH Sci Rep; 2015 Sep; 5():14176. PubMed ID: 26387706 [TBL] [Abstract][Full Text] [Related]
12. Secretion of mouse ZP3, the sperm receptor, requires cleavage of its polypeptide at a consensus furin cleavage-site. Williams Z; Wassarman PM Biochemistry; 2001 Jan; 40(4):929-37. PubMed ID: 11170414 [TBL] [Abstract][Full Text] [Related]
13. Both PA63 and PA83 are endocytosed within an anthrax protective antigen mixed heptamer: a putative mechanism to overcome a furin deficiency. Chekanov AV; Remacle AG; Golubkov VS; Akatov VS; Sikora S; Savinov AY; Fugere M; Day R; Rozanov DV; Strongin AY Arch Biochem Biophys; 2006 Feb; 446(1):52-9. PubMed ID: 16384550 [TBL] [Abstract][Full Text] [Related]
14. Tissue distribution and processing of proSAAS by proprotein convertases. Sayah M; Fortenberry Y; Cameron A; Lindberg I J Neurochem; 2001 Mar; 76(6):1833-41. PubMed ID: 11259501 [TBL] [Abstract][Full Text] [Related]
15. Recovery of Recombinant Crimean Congo Hemorrhagic Fever Virus Reveals a Function for Non-structural Glycoproteins Cleavage by Furin. Bergeron É; Zivcec M; Chakrabarti AK; Nichol ST; Albariño CG; Spiropoulou CF PLoS Pathog; 2015 May; 11(5):e1004879. PubMed ID: 25933376 [TBL] [Abstract][Full Text] [Related]
16. Regulation of prohepcidin processing and activity by the subtilisin-like proprotein convertases Furin, PC5, PACE4 and PC7. Scamuffa N; Basak A; Lalou C; Wargnier A; Marcinkiewicz J; Siegfried G; Chrétien M; Calvo F; Seidah NG; Khatib AM Gut; 2008 Nov; 57(11):1573-82. PubMed ID: 18664504 [TBL] [Abstract][Full Text] [Related]
17. Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. Van de Ven WJ; Roebroek AJ; Van Duijnhoven HL Crit Rev Oncog; 1993; 4(2):115-36. PubMed ID: 8420571 [TBL] [Abstract][Full Text] [Related]
18. Furin processing dictates ectodomain shedding of human FAT1 cadherin. Sadeqzadeh E; de Bock CE; Wojtalewicz N; Holt JE; Smith ND; Dun MD; Schwarte-Waldhoff I; Thorne RF Exp Cell Res; 2014 Apr; 323(1):41-55. PubMed ID: 24560745 [TBL] [Abstract][Full Text] [Related]
19. TACE/ADAM-17 maturation and activation of sheddase activity require proprotein convertase activity. Srour N; Lebel A; McMahon S; Fournier I; Fugère M; Day R; Dubois CM FEBS Lett; 2003 Nov; 554(3):275-83. PubMed ID: 14623079 [TBL] [Abstract][Full Text] [Related]
20. N-glycosylation/deglycosylation as a mechanism for the post-translational modification/remodification of proteins. Suzuki T; Kitajima K; Inoue S; Inoue Y Glycoconj J; 1995 Jun; 12(3):183-93. PubMed ID: 7496130 [No Abstract] [Full Text] [Related] [Next] [New Search]