These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30861023)

  • 1. Multisensory guided associative learning in healthy humans.
    Eördegh G; Őze A; Bodosi B; Puszta A; Pertich Á; Rosu A; Godó G; Nagy A
    PLoS One; 2019; 14(3):e0213094. PubMed ID: 30861023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisensory stimuli enhance the effectiveness of equivalence learning in healthy children and adolescents.
    Eördegh G; Tót K; Kiss Á; Kéri S; Braunitzer G; Nagy A
    PLoS One; 2022; 17(7):e0271513. PubMed ID: 35905111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintained Visual-, Auditory-, and Multisensory-Guided Associative Learning Functions in Children With Obsessive-Compulsive Disorder.
    Pertich Á; Eördegh G; Németh L; Hegedüs O; Öri D; Puszta A; Nagy P; Kéri S; Nagy A
    Front Psychiatry; 2020; 11():571053. PubMed ID: 33324251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic responses in human multisensory and auditory association cortex to purely visual stimulation.
    Meyer M; Baumann S; Marchina S; Jancke L
    BMC Neurosci; 2007 Feb; 8():14. PubMed ID: 17284307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Stimulus Complexity on the Effectiveness of Visual Associative Learning.
    Eördegh G; Tót K; Kelemen A; Kiss Á; Bodosi B; Hegedűs A; Lazsádi A; Hertelendy Á; Kéri S; Nagy A
    Neuroscience; 2022 Apr; 487():26-34. PubMed ID: 35122873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active learning of novel sound-producing objects: motor reactivation and enhancement of visuo-motor connectivity.
    Butler AJ; James KH
    J Cogn Neurosci; 2013 Feb; 25(2):203-18. PubMed ID: 22905816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impairment of visually guided associative learning in children with Tourette syndrome.
    Eördegh G; Pertich Á; Tárnok Z; Nagy P; Bodosi B; Giricz Z; Hegedűs O; Merkl D; Nyujtó D; Oláh S; Őze A; Vidomusz R; Nagy A
    PLoS One; 2020; 15(6):e0234724. PubMed ID: 32544176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power-spectra and cross-frequency coupling changes in visual and Audio-visual acquired equivalence learning.
    Puszta A; Pertich Á; Katona X; Bodosi B; Nyujtó D; Giricz Z; Eördegh G; Nagy A
    Sci Rep; 2019 Jul; 9(1):9444. PubMed ID: 31263168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associative learning in deficit and nondeficit schizophrenia.
    Farkas M; Polgár P; Kelemen O; Réthelyi J; Bitter I; Myers CE; Gluck MA; Kéri S
    Neuroreport; 2008 Jan; 19(1):55-8. PubMed ID: 18281892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between multisensory associative learning and multisensory integration.
    Lauzon SA; Abraham AE; Curcin K; Butler BE; Stevenson RA
    Neuropsychologia; 2022 Sep; 174():108336. PubMed ID: 35872233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations.
    Butler AJ; James TW; James KH
    J Cogn Neurosci; 2011 Nov; 23(11):3515-28. PubMed ID: 21452947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the Multisensory Consequences of One's Own Action: BOLD Suppression in Auditory and Visual Cortices.
    Straube B; van Kemenade BM; Arikan BE; Fiehler K; Leube DT; Harris LR; Kircher T
    PLoS One; 2017; 12(1):e0169131. PubMed ID: 28060861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neural model of hippocampal-striatal interactions in associative learning and transfer generalization in various neurological and psychiatric patients.
    Moustafa AA; Keri S; Herzallah MM; Myers CE; Gluck MA
    Brain Cogn; 2010 Nov; 74(2):132-44. PubMed ID: 20728258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual consequent stimulus complexity affects performance in audiovisual associative learning.
    Tót K; Eördegh G; Kiss Á; Kelemen A; Braunitzer G; Kéri S; Bodosi B; Nagy A
    Sci Rep; 2022 Oct; 12(1):17793. PubMed ID: 36272988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visually guided equivalence learning in borderline personality disorder.
    Rosu A; Tót K; Godó G; Kéri S; Nagy A; Eördegh G
    Heliyon; 2022 Oct; 8(10):e10823. PubMed ID: 36203892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical Power-Density Changes of Different Frequency Bands in Visually Guided Associative Learning: A Human EEG-Study.
    Puszta A; Katona X; Bodosi B; Pertich Á; Nyujtó D; Braunitzer G; Nagy A
    Front Hum Neurosci; 2018; 12():188. PubMed ID: 29867412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual integration enhances associative memory equally for young and older adults without reducing hippocampal encoding activation.
    Memel M; Ryan L
    Neuropsychologia; 2017 Jun; 100():195-206. PubMed ID: 28456521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioural evidence for separate mechanisms of audiovisual temporal binding as a function of leading sensory modality.
    Cecere R; Gross J; Thut G
    Eur J Neurosci; 2016 Jun; 43(12):1561-8. PubMed ID: 27003546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multisensory enhancement elicited by unconscious visual stimuli.
    Barutchu A; Spence C; Humphreys GW
    Exp Brain Res; 2018 Feb; 236(2):409-417. PubMed ID: 29197998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Interplay Between Multisensory Associative Learning and IQ in Children.
    Barutchu A; Fifer JM; Shivdasani MN; Crewther SG; Paolini AG
    Child Dev; 2020 Mar; 91(2):620-637. PubMed ID: 30620403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.