These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30861064)

  • 1. Stomatal frequency of Quercus glauca from three material sources shows the same inverse response to atmospheric pCO2.
    Hu JJ; Xing YW; Su T; Huang YJ; Zhou ZK
    Ann Bot; 2019 Jul; 123(7):1147-1158. PubMed ID: 30861064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels.
    Hu JJ; Xing YW; Turkington R; Jacques FM; Su T; Huang YJ; Zhou ZK
    Ann Bot; 2015 Apr; 115(5):777-88. PubMed ID: 25681824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-quality haplotype-resolved genome assembly for ring-cup oak (Quercus glauca) provides insight into oaks demographic dynamics.
    Luo CS; Li TT; Jiang XL; Song Y; Fan TT; Shen XB; Yi R; Ao XP; Xu GB; Deng M
    Mol Ecol Resour; 2024 Apr; 24(3):e13914. PubMed ID: 38108568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia.
    Deng M; Jiang XL; Hipp AL; Manos PS; Hahn M
    Mol Phylogenet Evol; 2018 Feb; 119():170-181. PubMed ID: 29175095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers.
    Haworth M; Elliott-Kingston C; McElwain JC
    Oecologia; 2011 Sep; 167(1):11-9. PubMed ID: 21461935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers.
    Haworth M; Heath J; McElwain JC
    Ann Bot; 2010 Mar; 105(3):411-8. PubMed ID: 20089556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.
    Wang Y; Momohara A; Wang L; Lebreton-Anberrée J; Zhou Z
    PLoS One; 2015; 10(7):e0130941. PubMed ID: 26154449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Late Oligocene fossil acorns and nuts of
    Liu XY; Song HZ; Wu XK; Hu JR; Huang WY; Quan C; Jin JH
    Plant Divers; 2023 Jul; 45(4):434-445. PubMed ID: 37601538
    [No Abstract]   [Full Text] [Related]  

  • 9. Atmospheric pCO
    Arab L; Seegmueller S; Kreuzwieser J; Eiblmeier M; Rennenberg H
    Planta; 2019 Feb; 249(2):481-495. PubMed ID: 30259170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations.
    Field KJ; Duckett JG; Cameron DD; Pressel S
    Ann Bot; 2015 May; 115(6):915-22. PubMed ID: 25858324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reading a CO
    Beerling DJ; Royer DL
    New Phytol; 2002 Mar; 153(3):387-397. PubMed ID: 33863224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First Report of Powdery Mildew Caused by Cystotheca wrightii on Quercus glauca in Korea.
    La YJ; Lee SK; Shin CH; Cho SE; Shin HD
    Plant Dis; 2014 Jun; 98(6):850. PubMed ID: 30708665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2.
    Kouwenberg LL; McElwain JC; Kürschner WM; Wagner F; Beerling DJ; Mayle FE; Visscher H
    Am J Bot; 2003 Apr; 90(4):610-9. PubMed ID: 21659156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 40-million-year history of atmospheric CO(2).
    Zhang YG; Pagani M; Liu Z; Bohaty SM; Deconto R
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2001):20130096. PubMed ID: 24043869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatal index responses of Agrostis canina to CO2 and sulphur dioxide: implications for palaeo-[CO2] using the stomatal proxy.
    Haworth M; Gallagher A; Elliott-Kingston C; Raschi A; Marandola D; McElwain JC
    New Phytol; 2010 Nov; 188(3):845-55. PubMed ID: 20704659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of simulated acid rain on Quercus glauca seedlings photosynthesis and chlorophyll fluorescence].
    Li J; Jiang H; Yu SQ; Jiang FW; Yin XM; Lu MJ
    Ying Yong Sheng Tai Xue Bao; 2009 Sep; 20(9):2092-6. PubMed ID: 20030127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary trends and ecological differentiation in early Cenozoic Fagaceae of western North America.
    Bouchal J; Zetter R; Grímsson F; Denk T
    Am J Bot; 2014 Aug; 101(8):1332-49. PubMed ID: 25156982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Response of photosynthesis traits of dominant plant species to different light regimes in the secondary forest in the area of Qiandao Lake, Zhejiang, China].
    Guan M; Jin ZX; Wang Q; Li YL; Zuo W
    Ying Yong Sheng Tai Xue Bao; 2014 Jun; 25(6):1615-22. PubMed ID: 25223015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paleobotanical evidence for near present-day levels of atmospheric Co2 during part of the tertiary.
    Royer DL; Wing SL; Beerling DJ; Jolley DW; Koch PL; Hickey LJ; Berner RA
    Science; 2001 Jun; 292(5525):2310-3. PubMed ID: 11423657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2.
    Kitao M; Komatsu M; Yazaki K; Kitaoka S; Tobita H
    Environ Pollut; 2015 Nov; 206():133-41. PubMed ID: 26162332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.