BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30861277)

  • 1. Simulation analysis for tumor radiotherapy based on three-component mathematical models.
    Hong WS; Zhang GQ
    J Appl Clin Med Phys; 2019 Mar; 20(3):22-26. PubMed ID: 30861277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of normal and cancer cells' populations with fractional derivative under radiotherapy.
    Farayola MF; Shafie S; Mohd Siam F; Khan I
    Comput Methods Programs Biomed; 2020 Apr; 187():105202. PubMed ID: 31835107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling of radiotherapy cancer treatment using Caputo fractional derivative.
    Farayola MF; Shafie S; Siam FM; Khan I
    Comput Methods Programs Biomed; 2020 May; 188():105306. PubMed ID: 31901851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung Cancer Radiotherapy: Simulation and Analysis Based on a Multicomponent Mathematical Model.
    Hong WS; Wang SG; Zhang GQ
    Comput Math Methods Med; 2021; 2021():6640051. PubMed ID: 34012477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computer simulation of in vivo tumour growth and response to radiotherapy: new algorithms and parametric results.
    Dionysiou DD; Stamatakos GS; Uzunoglu NK; Nikita KS
    Comput Biol Med; 2006 May; 36(5):448-64. PubMed ID: 15916755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal Placement of Irradiation Sources in the Planning of Radiotherapy: Mathematical Models and Methods of Solving.
    Blyuss O; Koriashkina L; Kiseleva E; Molchanov R
    Comput Math Methods Med; 2015; 2015():142987. PubMed ID: 26543492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Interactive determination of the parameters of mathematical models in planning radiotherapy of malignant tumors. 3. Method of local adjustment of the parameters of mathematical models (examples of application)].
    Klepper LIa
    Med Tekh; 2001; (1):27-33. PubMed ID: 11244851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of out-of-field dose distribution in carbon-ion radiotherapy by Monte Carlo simulation.
    Yonai S; Matsufuji N; Namba M
    Med Phys; 2012 Aug; 39(8):5028-39. PubMed ID: 22894428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Analysis of the evolution of esophageal tumor volume in radiotherapy process using a mathematical model].
    Liang B; Wen W; Zhan W; Lu X; Jiang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):752-5. PubMed ID: 24059050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EUD-based biological optimization for carbon ion therapy.
    Brüningk SC; Kamp F; Wilkens JJ
    Med Phys; 2015 Nov; 42(11):6248-57. PubMed ID: 26520717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SOFT-RT: Software for IMRT simulations based on MCNPx code.
    Fonseca TC; Campos TP
    Appl Radiat Isot; 2016 Nov; 117():111-117. PubMed ID: 26774409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical framework for prescribing radiotherapy dose distributions using patient-specific biological information.
    South CP; Partridge M; Evans PM
    Med Phys; 2008 Oct; 35(10):4599-611. PubMed ID: 18975706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical simulation of organ motion and daily setup uncertainties: implications for radiation therapy.
    Killoran JH; Kooy HM; Gladstone DJ; Welte FJ; Beard CJ
    Int J Radiat Oncol Biol Phys; 1997 Jan; 37(1):213-21. PubMed ID: 9054898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of nuclear interactions in polyethylene range compensators for carbon-ion radiotherapy.
    Kanematsu N; Koba Y; Ogata R; Himukai T
    Med Phys; 2014 Jul; 41(7):071704. PubMed ID: 24989373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The interactive determination of the mathematical model parameters for the planning of the radiation therapy of malignant tumors. 2. A method of adjusting the mathematical model parameters for calculating the tolerance doses and probabilities of the occurrence of radiation complications in body organs and tissues].
    Klepper LIa
    Med Tekh; 2000; (5):36-40. PubMed ID: 11076364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing the MLC model parameters for IMRT in the RayStation treatment planning system.
    Chen S; Yi BY; Yang X; Xu H; Prado KL; D'Souza WD
    J Appl Clin Med Phys; 2015 Sep; 16(5):322–332. PubMed ID: 26699315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulations of dose distributions with necrotic tumor targeted radioimmunotherapy.
    Penfold SN; Brown MP; Staudacher AH; Bezak E
    Appl Radiat Isot; 2014 Aug; 90():40-5. PubMed ID: 24685493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose sculpting with generalized equivalent uniform dose.
    Wu Q; Djajaputra D; Liu HH; Dong L; Mohan R; Wu Y
    Med Phys; 2005 May; 32(5):1387-96. PubMed ID: 15984690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimization.
    Zarepisheh M; Uribe-Sanchez AF; Li N; Jia X; Jiang SB
    Med Phys; 2014 Apr; 41(4):041705. PubMed ID: 24694125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic CT simulation optimization for radiation therapy: A general strategy.
    Li H; Yu L; Anastasio MA; Chen HC; Tan J; Gay H; Michalski JM; Low DA; Mutic S
    Med Phys; 2014 Mar; 41(3):031913. PubMed ID: 24593731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.